IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO. 11,

NOVEMBER 2017 3089

Building NVRAM-Aware Swapping Through
Code Migration in Mobile Devices

Kan Zhong, Duo Liu

, Lingbo Long, Jinting Ren, Yang Li, and Edwin Hsing-Mean Sha

Abstract—Mobile applications are becoming increasingly feature-rich and powerful, but also dependent on large main memories,
which consume a large portion of system energy, especially for devices equipped with 4/6 GB DRAM. Swapping inactive DRAM pages
to byte-addressable, non-volatile memory (NVRAM) is a promising solution to this problem. However, most NVRAMs have limited write
endurance and the current victim pages selecting algorithm does not aware it. Therefore, to make it practical, the design of an NVRAM
based swapping system must also consider endurance. In this paper, we target at prolonging the lifetime of NVRAM based swap area
in mobile devices by reducing the write activities to NVRAM based swap area. Different from traditional wisdom, such as wear leveling
and hot/cold data identification, we propose to build a system called nCode, which exploits the fact that code pages are easy to identify,
read-only, and therefore a perfect candidate for swapping. Utilizing NVRAM'’s byte-addressability, we support execute-in-place (XIP) of
the code pages in the swap area, without copying them back to DRAM based main memory. Experimental results based on the Google
Nexus 5 smartphone show that nCode can effectively prolong the lifetime of NVRAM under various workloads.

Index Terms—Smartphone, swapping, non-volatile memory, application relaunching delay

1 INTRODUCTION

OBILE devices like smartphones are always short for

main memory as applications are getting more and
more powerful and resource demanding. Having larger
main memory, which is DRAM based can effectively meet
the applications” demands for memory space. A shown in
Fig. 1, the memory capacity of flagship smartphones has
increased 24 times over the past seven years. To meet the
memory demands, current mainstream phones have
equipped 4 GB or even 6 GB main memory, such as Samsung
Galaxy Note 7 and OnePlus 3, which respectively equipped
with 4 GB and 6 GB DRAM. However, more DRAM installed
means more energy consumption and drains the battery
more faster. Swapping is an effective way to extend memory
capacity without adding more DRAM for big servers. How-
ever, it has been disabled in most smartphones and other
mobile systems due to the sub-optimal random access perfor-
mance of flash memory [2]. To still satisfy memory allocation
requests under this setting when the system is under memory
pressure, existing running applications have to be constantly
terminated. This way avoids the performance degradation

o K. Zhong, D. Liu, |. Ren, Y. Li, and E. H.-M. Sha are with the College of
Computer Science, Chongqing University, No. 174, Shazhengjie, Shapingba,
Chongqing 400044, China, and the Key Laboratory of Dependable Service
Computing in Cyber Physical Society, (Chongging University), Ministry of
Education, Chongqing 400044, China.

E-mail: {kzhong1991, liuduo }@cqu.edu.cn.

o L. Longiswith the College of Computer Science and Technology, Chongging
University of Posts and Telecommunications, Chongqing 400065, China.
E-mail: longlb@cqupt.edu.cn.

Manuscript received 31 Oct. 2016; revised 30 Apr. 2017; accepted 24 May
2017. Date of publication 8 June 2017; date of current version 11 Oct. 2017.
(Corresponding author: Duo Liu.)

Recommended for acceptance by M. Kandemir.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2017.2713780

caused by swapping to flash, however, it makes application
switch and load time longer, and worsens user experience.

Emerging byte-addressable non-volatile memory
(NVRAM) technologies such as phase change memory
(PCM) [3], spin-transfer torque RAM (STT-RAM) [4], mem-
ristor [5] and Intel and Micron’s 3D XPoint [6] have nearly
DRAM performance and much lower standby and read
power than DRAM. Several approaches have been proposed
to integrate NVRAM into computer systems [7], [8], [9], [10].
With byte-addressable NVRAM, swapping is no more a
deal-breaker for smartphone performance and user experi-
ence. Swapping to NVRAM [11] avoids excessive application
terminations and can preserve the most performance as
NVRAM is orders of magnitude faster than flash. Since
NVRAM is byte-addressable, the heavy storage layer which
traditional swapping is built on can be replaced by a light-
weight memory layer, further improving performance and
simplifying system design. Re-adopting swapping using
NVRAM also significantly reduces energy consumption of
smartphones as NVRAM eliminates a considerable portion
of the system’s standby power [12], [13], [14].

Despite the benefits brought by NVRAM based swap-
ping, a must-solve problem that is similar to swapping to
flash is the endurance of NVRAM—most NVRAMs have
limited write endurance (“write-limited”). For example, the
way PCM works determines a cell can only be re-written for
10%-10° times before worn-out. To have a practical NVRAM
based swapping system in smartphones, the endurance of
NVRAM must be prolonged. Although a heap-based wear-
leveling algorithm is already proposed to evenly distribute
writes to all NVRAM pages in NVRAM based swap
area [11], the total writes to NVRAM based swap area is not
reduced. Therefore, to prolong the lifetime of NVRAM based
swap area, we argue that when swapping to NVRAM, one
must reduce writes to NVRAM as many as possible.

1045-9219 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

3090

™~ 6 GB
> LPDDR4

i 1 GB LPDDR3 E E 3 GB LPDDR3
512 MB 2 GB LPDDR3
256 MB | PDDR2

LPDDR1 .
2009 " 2010 ' 2011

Il
2012 T

Il »
2015 ' 2016

Fig. 1. Memory evolution of flagship smartphones from 2009 to 2016.

When selecting victim DRAM pages to swap out, the con-
ventional wisdom is active/inactive pages identification.
Identifying inactive pages—those that are not frequently
modified—is both lightweight and proactive as in this way,
we can control which pages can be placed in NVRAM and
DRAM main memory. Since inactive pages are not accessed
frequently, they are given a higher priority to be swapped
out to NVRAM. However, different applications have vastly
different data access patterns, obtaining proper active/inac-
tive pages identification for smartphones without applica-
tion-specific information and make it adaptive to different
workloads are difficult. Moreover, due to intensive user inter-
actions—applications are consecutively switched between
foreground and background, page thrashing, which exists in
most inactive/active data identification based page replace-
ment algorithms will be exacerbated. Therefore, pages may
consecutively moving between DRAM and NVRAM swap
area, makes the current victim pages selecting algorithm
does not aware the limited endurance of NVRAM.

Instead of selecting inactive pages, we find that read-only
pages are good candidates for swapping to write-limited
NVRAM as read-only pages can be read directly in the
NVRAM. However, identifying read-only pages involves
inspecting every pages in the process address space, which
would introduce a great overhead. We observe that code
pages are all read-only and identifying code pages is very
straightforward with the segment information provided by
the OS. With these insights, we propose to build a system
called “nCode” to reduce writes on NVRAM based swap
space in smartphones. nCode gives code pages higher prior-
ities when finding swapping candidates. In particular,
nCode utilizes the unique direct read ability provided by
NVRAM based swapping [11], [12] to allow execute-in-
place of code pages on the swap space. Since NVRAM is
byte-addressable, all the swapped out pages can be accessed
directly through load and store instructions. Conse-
quently, one does not have to swap in pages for read
requests. Therefore, an NVRAM based swapping system
can simply set up page table mappings from virtual
addresses to physical NVRAM addresses to allow direct
read. Code pages are read and executed directly in the
swap area, without being swapped back to main memory.

We have implemented nCode in Google Android and its
Linux kernel. To evaluate its effectiveness, we conduct
experiments using various real applications on a Nexus 5
smartphone. Experimental results show that nCode can
reduce significant number of writes to NVRAM when com-
pared to swapping schemes that use traditional page frame
reclaim algorithm, furthering improving the endurance of
NVRAM. The contributions of this work are summarized as
follows:

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.11, NOVEMBER 2017
TABLE 1
Comparison of PCM and DRAM [7], [24], [25]
Attributes DRAM PCM
Read Latency ~50ns 50 - 100ns
Set/Reset Latency ~20 - 50ns ~100 - 700ns
Power ~W/GB 100—500mW /die
Idle power ~W/GB <0.1W
Endurance (write cycles) 10% 108 — 107

e We propose nCode, a discriminative NVRAM based
swapping system that prioritizes the swapping of
read-only code pages, to reduce harmful writes to
write-limited NVRAM.

e Utilizing the byte-addressability of NVRAM, we
provide XIP support of code pages in the NVRAM
swap area, without copying the code pages back to
DRAM.

e We implement nCode into Android’s Linux kernel,
and evaluate nCode with real applications based on
Google Nexus 5.

The remainder of this paper is organized as follows.
Section 2 outlines background on swapping and emerging
NVRAM in mobile devices, as well as the motivation. Section 3
details the design of nCode. Evaluation results are presented
and analyzed in Section 4. Finally, we discuss related work
and conclude in Sections 5 and 6, respectively.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce the background on
NVRAM and swapping in mobile devices, especially in
smartphones, then we present the motivation.

2.1 Emerging Non-Volatile Memory

Byte-addressable non-volatile memory such as PCM [3],
STT-RAM [4], memristor [5] and Intel and Micron’s 3D
XPoint [6] are future candidates for replacing DRAM (as
main memory), SRAM (as on-chip cache), and even flash (as
storage) because of its nice features such as low power con-
sumption, high density and non-volatility [15], [16]. Com-
pared to DRAM, NVRAM does not need constant voltage to
maintain data because it keeps data by changing the physi-
cal state of its underlying material, such as resistance level.
PCM is one of the most promising candidates. It uses the
state changing between amorphous and crystalline of
phase-change materials (e.g., GST) to record logical zeros
and ones. Therefore, as shown in Table 1, PCM exhibits
much lower power consumption and similar read latency
but longer write latency when compared to DRAM.

Despite the advantages of NVRAM, most NVRAMs are
write-limited, i.e., each PCM cell can only be programmed
for a limited 108-10° times [17], [18], while the number for
DRAM is at least 10'°. Besides PCM, other NVRAMs also
have similar limited write endurance. Two major ways to
overcome the endurance problem of NVRAM are wear
leveling and write reduction. Wear leveling evenly distrib-
utes the writes over all memory cells to prevent some cells
wearing out faster [19], [20], [21]. Write reduction tries
reduce the number of writes or the number of bit flips to
memory cells [22], [23]. In this paper, we try to prolong the

ZHONG ET AL.: BUILDING NVRAM-AWARE SWAPPING THROUGH CODE MIGRATION IN MOBILE DEVICES

lifetime of NVRAM by reducing the total writes to NVRAM
based swap area. Moreover, this paper do not target at any
specific NVRAM technologies as the proposed technique
works in the OS level.

2.2 Swapping and Victim Pages Selecting

Main memory has never been enough for smartphone appli-
cations, hence the trend of having big main memories in
tiny smartphones. However, more memory also means
more energy consumption since the memory subsystem is a
major contributor to the overall energy consumption. Tradi-
tionally, an effective solution to this problem is swapping.
Instead of adding more DRAM, swapping extends the
memory capacity by borrowing space from secondary sto-
rages. When there is no sufficient space to meet the memory
allocation request, a page frame reclaim routine will start
and write inactive pages to swap area. In most smartphones,
flash memory is adopted as the storage device due to its low
cost and high capacity, and therefore is usually used as the
swap area when swapping is enabled. However, flash mem-
ory based swapping is usually disabled in smartphones for
two main reasons. First, due to the limited bandwidth and
performance of the on-board flash memory (i.e., eMMCh),
swapping in and out pages can lead to I/O contentions, and
thus potentially slowing down the normal I/O operations.
Second, frequent page reads/writes will exacerbate the
wear condition of flash memory and increase its garbage
collection overhead.

A recent solution to enable swapping without perfor-
mance degradation is using the in-memory paging architec-
ture [11], [12], [13]. In this architecture, NVRAM is attached
to the memory bus, side by side with DRAM, thus it can be
accessed directly by using the load and store instruc-
tions. Different from the hybrid memories, which treat
NVRAM as part of main memory, the in-memory paging
architecture dedicates NVRAM as the swap area to store
inactive DRAM pages when there is no sufficient DRAM
space. When selecting victim pages, a key component is the
page frame reclamation algorithm (PFRA), which is used to
select victim pages which needs to be swapped out. Usually
two page lists are maintained: the active list and inactive list.
Anonymous pages in the inactive list are scanned and
selected as candidates to be swapped out. However, smart-
phones usually exhibit intensive user interactions, making
applications consecutively switching between foreground
and background, and thus pages may alternate between
active and inactive states and consecutively moving
between DRAM and NVRAM swap area. Therefore, to
make NVRAM-based swapping practical, a must-solve
problem is the endurance of NVRAM. Although a head-
based ware-leveling algorithm has been proposed to evenly
distribute writes to all NVRAM pages [11], the total writes
to NVRAM is not reduced, which can shorten the lifetime of
NVRAM swap area.

In this paper, we found that page type is usually avail-
able to the OS, and it is easy for the OS to differentiate code
and data pages. The read-only code pages making them a
perfect candidate for swapping to write-limited NVRAM.

1. Embedded Multi Media Card (eMMC), comprised by a flash chip
and a controller.

3091
TABLE 2
The Number of Code Pages of Popular Applications
Applications # of total pages # of code pages Ratio
Firefox 44,199 7,338 16.60%
Chrome 28,408 5,896 20.75%
Ebay 21,621 4,577 21.17%
Google+ 22,162 5,030 22.70%
Facebook 29,244 5,522 18.88%
Pinterest 23,941 4,198 17.53%
Instagram 13,318 2,557 19.20%
Flipboard 22,358 4,008 17.93%

Therefore, we argue that a better solution is to swap out
code pages and execute the code in-place of NVRAM swap
area, without copying them back to main memory. Through
this, the consecutively page moving between DRAM and
NVRAM can be avoid and thus the writes to NVRAM swap
area can be reduced.

2.3 Motivation

In NVRAM-based swapping, traditional page reclaim algo-
rithm does not aware the limited endurance of NVRAM
and may consecutively move pages between DRAM and
NVRAM, thus shorten the lifetime of NVRAM based swap
area.

In this paper, we give the highest priority to code pages
for swapping out. In Table 2, we compare the number of
total pages and the number of code pages of several popular
applications. As shown, code pages, including processes’
text section and shared library make a large proportion (i.e.,
around 20 percent) of the application’s total pages. There-
fore, selecting code pages for swapping out shows a high
potential in reclaiming memory space. Moreover, code
pages usually exhibit read-only access permission. This
motivate us to design a novel page reclaim technique, which
selects code pages to swap out and executes code pages in
place on the NVRAM-based swap area. Unlike the tradi-
tional page selecting policy, in which pages are copied back
to DRAM upon requested and thus pages may consecu-
tively moving between DRAM and swap area, the proposed
technique executes the code pages in place on the NVRAM
and thus avoid page thrashing, which finally reduce the
writes to NVRAM swap area. We illustrate the design and
evaluation of this architecture in the rest of this paper.

3 NCODE DESIGN

In this section, we first give an overview of nCode. We then
present the key techniques of nCode in details, including
runtime code pages identification, supporting for code pages
XIP of swap area and NVRAM swap area management.

3.1 Overview

We illustrates the system architecture of nCode in Fig. 2. In
an NVRAM based swapping system, the swap area is
directly attached to the memory bus and accessed through
load and store instructions, instead of block I/O. The
proposed nCode contains three major components: victim
page selection, XIP engine and NVRAM swap area manage-
ment. The victim page selection module responses for

Select victim process Memory allocation requests

‘ Low memory killer M Pageout daemon ‘4% Buddy system ‘

| v |
i l Code page identification ‘ B i lPage aIIocation/deaIIocation‘ i
I I
i l Inactive page selection ‘ plzz‘;i(rﬂp) l Wear-leveling ‘ 3
i Victim page selection Swap area management i
| i
L i

The Proposed nCode Subsystem

Attached DRAM and NVRAM

[« MMU [«—{ NVRAM Swap Area |

Fig. 2. System architecture. Swap area is backed by NVRAM and mem-
ory interface is used to swap out victim code pages selected by nCode.

DRAM

selecting victim pages to swap out and then the XIP engine
provides support for XIP of code pages in swap area.
NVRAM swap area management module manages the allo-
cation/deallocation of NVRAM pages and integrates a
heap-based wear-leveling algorithm, which has been pro-
posed and evaluated in our previous work [11]. When the
system’s memory is under pressure, the pageout daemon
(i.e., kswapd) starts to reclaim memory space by swapping
selected victim pages to NVRAM swap area and writing
back cached pages to secondary storage.

Since code pages contain program binary code or
mapped shared libraries, they can be easily recognized
using the information provide by the OS. Different from
normal data pages that can be read and written, code pages
are usually read-only and marked as executable. Exploit-
ing this property, when selecting victim pages to reclaim
memory space, nCode will start to scan the virtual address
space of all running processes to identify code pages and
and select those pages as candidates to be swapped out.
Then with the support of XIP engine, we execute the code
in-place of the swap area without copying these code pages
back to main memory by utilizing the byte-addressability of
NVRAM. However, when there is no enough code pages to
select for swapping out, the traditional page selecting algo-
rithm is used to reclaim inactive pages.

Since the NVRAM pages are allocated/deallocated in
unit of single page, we currently employ a simple doubly
linked list to manage all the free pages in NVRAM swap
area. Our previously proposed heap-based wear-leveling
algorithm, namely Heap-Wear is also adopted to evenly dis-
tribute writes across the whole swap area. Heap-Wear
records the age information of each page in NVRAM and
always chooses a “young” NVRAM page to store the page
swapped out from DRAM, guarantees “old” page will not
be worn out quickly. In this paper, we will focus on the
code pages identification and in-place execution, more
details about NVRAM swap space management can be
found in our previous work [11].

3.2 Page Reclaiming in nCode

When the system’s memory is under pressure, ie., the
amount of free memory is below a predefined threshold,
nCode will start to select victim pages to reclaim memory
space. In our design, the code pages have the highest

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO. 11,

NOVEMBER 2017

,
PTE i 010101
1% 010011

Memory mapping /

|
task_struct (e.g., /etc/Id.s0) PTE b ! :
unsigned long state; ee Page table \
int prio; }
unsigned long policy; Hea o] . !
pid_t pid; eee } E
...... |
Stack PTE 1, [010001

Text /'P PTtE bi | :
f age table \
ea. o) [Fo8e e

,,,,,,,,,,

Mapped code
pages

Process virtual address space

Fig. 3. Identifying code pages of an victim process. Code pages are
scanned trough the process virtual address space using the information
provide in kernel data structures.

priority to be swapped out and when there is no more code
page to reclaim, inactive pages will be selected. In this sec-
tion, we will primarily show how to identify code pages by
scanning the process virtual address space at runtime.

3.2.1 Identifying Code Pages

The identification of code pages (i.e., selection of code pages
as swapping candidates) is accomplished with the pageout
daemon, which is responses for monitoring memory usage
and reclaiming memory space by invoking memory shrink
components, such as nCode. Therefore, when there is no suf-
ficient memory left, the pageout daemon will notify nCode
to start memory reclaiming process. In nCode, instead of
selecting inactive pages, we select code pages as swapping
candidates, utilizing the information provided by various
data structures that maintain process states at runtime. After
code pages are migrated to the NVRAM based swap area,
they are mapped to the processes” virtual address space via
page tables to allow direct read and XIP [12]. Swapping in
upon read is therefore avoid. The code pages in NVRAM are
freed when the process referencing them exit.

To obtain candidate code pages, we first select victim
processes which owns code pages. As shown in Fig. 2,
nCode uses the mechanism provide by Android Low Mem-
ory Killer (LMK) to select victim process. In Android OS,
LMK was originally for terminating applications to make
room for incoming memory allocation requests. When
selecting victim process, LMK tends to choose a process
with the lowest priority, which means the process currently
is not a foreground process and not used by smartphone
users, it is running or cached in the background. Therefore,
those kind of processes are perfect candidates. Note that if
multiple processes have the same priority, the one that with
the highest memory usage will be selected. After a process
is selected, we scan its virtual address space to find out all
code pages (i.e., those that are marked executable).

Fig. 3 illustrates how to identify code pages through pro-
cess virtual address space. As shown, the virtual memory
space belonging to a process consists of multiple virtual
memory areas (a.k.a vma), which are organized using a
linked list. Each memory area has multiple physical page
frames mapped with it through page tables, and its corre-
sponding data structure has several state flags to denote its
purpose, such as read and executable, indicating that
the physical pages are used to store shared libraries (e.g.,
/etc/1d.so) or the text section (i.e., the process’ code). In
nCode, we scans the given process’ memory areas and select

ZHONG ET AL.: BUILDING NVRAM-AWARE SWAPPING THROUGH CODE MIGRATION IN MOBILE DEVICES

Process virtual
address space DRAM
(2) Remove |
Page table Mapping (1) Migrate
code page
PTE (3) Setup new
mapping NVRAM

Fig. 4. XIP of code pages. (1) The code page is swapped out from DRAM
to NVRAM; (2) Remove the mapping for the code pages and free them;
(3) Set up new page table mappings for the code pages in NVRAM, to
allow the code to be executed in-place on NVRAM.

the executable areas. For each page in the selected areas, we
mark it as code page and migrate it to NVRAM swap area
to save DRAM space.

3.2.2 The Secondary Choice: Inactive Pages

In nCode, when there is no more code page to swap out,
which means that all the processes’ code pages have been
migrated to NVRAM swap area, the traditional page frame
reclaim algorithm will be adopted to select inactive pages
for swapping out. Therefore, inactive pages are considered
as secondary swap candidates in nCode. A traditional
PFRA maintains all the userspace pages in an active and
inactive list, which are both kept in least recently used
order, and pages can be moving between active list and
inactive based on their access patterns. In nCode, when the
system is under memory pressure and all the code pages
have been migrated to NVRAM swap area, pages in the
inactive list are selected to be swapped out.

Algorithm 1 shows the detailed steps to select victim
pages in nCode. As shown, we first use LMK to choose an vic-
tim process (line 3). Then, our algorithm scans its virtual
address space and selects the executable virtual memory
area. For each page in the selected memory area, we allocate
anew page in NVRAM (line 8), redirect the virtual addresses
that were pointing to the DRAM page to the NVRAM page
using the XIP engine (line 9), and copy the contents of DRAM
page to NVRAM page using memory copy (line 10). The
DRAM page is then freed to the OS memory manager for
future memory allocations (line 11). However, when all proc-
esses’ code pages have been migrated to NVRAM swap area
(.e., victim_list = null), nCode will use traditional PFRA to
swap out inactive pages (line 13). Moreover, if the NVRAM
swap area if full, LMK has to choose a process from all the
userspace process and then terminates it to reclaim memory
space (line 15-16). As shown in the algorithm, the code pages
identification involves scanning a process’ all virtual memory
areas. Let m denotes the number of virtual memory areas and
n denotes the number of pages in a virtual memory area, the
time complexity of the algorithm is O(mn).

3.3 XIP of Code Pages

Utilizing the byte-addressability of NVRAM, nCode pro-
vides XIP of code pages. Code pages in NVRAM are not
swapped in upon read access. In a naive implementation of
NVRAM based swap space, victim pages will be copied to
swap area first and then copied back to main memory when
these pages are accessed again. The kernel handles such
requests through the page fault handler, which fetches the

3093

requested pages from swap area, sets up new page table
mappings and then returns to the user process. The whole
operation will involve at least one page read in the swap
area, one memory page write and one page table entry
(PTE) write. The whole swap-in process is actually inducing
extra memory copy operation. With the byte-addressability
of NVRAM, unnecessary memory copy can be avoided as
the requested page already resides in memory—the
NVRAM swap area.

Algorithm 1. Page Reclaiming in nCode

Input: victim_list: reclaimable process list, proc_list: list of all
userspace processes;

Output: null
1: if NVRAM swap area has enough free space then
2: if victim_list # null then
3 proc — LMK _SELECT _-VICTIM (victim_list)
4 delete proc from victim _list
5: for each virtual memory area vma in proc do
6 if vma is executable then
7 for each page p in vma do
8 s « allocate a page from NVRAM

9: XIP_ENGINE(p, s)
10: MEMCPY (p, s)
11: FREE(p)
12: else
/* No more code page. */
13: Use traditional PFRA to swap out inactive pages;
14: else
15 proc — LMK_SELECT _VICTIM (proc_list)
/* Kill process to reclaim memory. */
16: LMK_KILL_PROCESS(proc);
17: return;

Specifically for code pages, we adopt the concept of XIP
to reduce these unnecessary memory copy operations
between main memory and the swap area. As shown in
Fig. 4, using the reversing mapping, we directly set up the
page table mappings for the process when its code pages
are stored in NVRAM. The code pages will still be available
to user space processes, i.e., the binary code in the pages
can be executed in-place on the swap area. In this way, we
do not need to copy the pages in swap area back to main
memory since the code pages are always read-only. Since
code pages executed on NVRAM can only be read, we do
not perform explicit swap in operations. In this work, pages
will be freed when the process is killed by LMK or exit natu-
rally, and thus code pages in the swap area will not be
erased until process termination. Thus, writes to the swap
area are limited, furthering prolonging the lifetime of the
NVRAM based swap area.

4 EVALUATION

We implement a prototype of nCode in Google Android 4.4
with the kernel version ARM Linux 3.4 for the Google
Nexus 5 smartphone. In the Android Linux kennel, we
introduce a new memory zone and serve it as the NVRAM
swap area for allocating NVRAM page frames. Cooperating
with the traditional PFRA, the code pages identification
technique has been integrated within the memory reclaim-
ing routine to select victim pages when the system’s

3094

Workload applications

o
DRAM NVRAM
— 2db shell 1700 MB 64/128/256 MB
' eMMC Swap area
’ Collect results ‘

Fig. 5. The experimental setup. We conduct the experiments on Google
Nexus 5 and use adb tool to communicate with it.

memory is under pressure. In our experiment, we do not
target at any specific type of NVRAM or emulate its latency
values. Though different NVRAMSs have different perfor-
mance parameters, we believe that future mobile NVRAM
products will generally provide near-DRAM performance.
In this section, we first give the experimental setup, and
then discuss the experiment metrics and methodology.
Finally, we present and analyze the experimental results.

4.1 Experimental Setup

Fig. 5 illustrates the experimental setup. We run all experi-
ments in a Google Nexus 5 smartphone. It features a Qual-
comm Snapdragon 800 processor clocked at 2.26 GHz and 2
GB DRAM as main memory. The phone is connected to a
desktop PC and the Android debug bridge (adb) is used to
communicate with it. Before each experiment, the phone is
rebooted and full charged to make sure it is working in its
full performance capability.

Since our system works in the OS level, we do not target
at any specific type of NVRAM. Though different NVRAM
technologies have different performance parameters, some
NVRAM technologies, such as STT-RAM and memristor
can meet or surpass DRAM’s latency. Therefore, in this
paper, we do not regard the performance of NVRAM as a
major problem, the NVRAM is simulated by using DRAM
and the latency difference between DRAM and NVRAM is
not concerned. In the experiments, we reserve 256 MB
DRAM from the Google Nexus 5's main memory and use it
to simulate NVRAM. Therefore, after reserving, we config-
ure the amount of available DRAM for OS to 1700 MB.

We test three different swapping shcemes: (1) flash-
based, (2) NVM-Swap, and (3) nCode. For flash-based
swapping, we use a file in the smartphone’s internal NAND
flash memory as the swap area”. The NVM-Swap is built on
NVRAM and use memory interface to swap in and out. It
also supports Copy-on-Write swap-in (CoWs) and enables
NVRAM wear-leveling. The difference between NVM-
Swap and nCode is that NVM-Swap uses traditional PFRA,
which chooses inactive pages to swap out while nCode pre-
fers code pages when selecting victim pages. Moreover,
nCode supports XIP of code pages in the swap area. We
compare nCode to NVM-Swap to see the performance and
write reduction achieved by nCode. For all these swapping
scheme, we configure three different swap sizes—64 MB,
128 MB and 256 MB.

Table 3 illustrates the workload applications we used to
evaluate nCode. As different kinds of applications may

2. Linux allows use a dedicated partition or file as the swap area.
Both methods use the same block interface and we use the file approach
for simplicity.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.11, NOVEMBER 2017
TABLE 3
Workload Applications
Category Applications
Browser Firefox, Chrome, Opera, UC Browser,

Next Browser
Google+, Pinterest, Twitter, Facebook,
Instagram

Social networking

Multimedia Google Play Music, MX Player, TTpod
Player, Youtube, KMPlayer

Gaming Angry Birds, Ingress, Temple Run,
Crazy Snowboard, Hill Climb Racing

Online shopping ~ Amazon, Ebay, Fancy, Google Play,
TaoBao

News BBC News, Flipboard, NetEase News,
TED, Zaker

Mix1 Chrome, Pinterest, Youtube, Ingress,
NetEase News

Mix2 Firefox, Facebook, Angry Birds,
Amazon, BBC News

exhibit different memory access patterns, we prepared six
categories of applications, including browser, social network-
ing, multimedia, gaming, online shopping and news. To rep-
resent the realistic scenarios, two mixed categories, namely
mix1 and mix2 have been added by combining the applica-
tions selected from the above six categories. For each test, we
run applications in the same category in round-robin order.

4.2 Metrics and Methodology

To evaluate the proposed nCode, we collect the results
based on the following metrics. The corresponding evalua-
tion methodology for each metric is discussed as well.

1) Number of swap-outs: To reduce the writes to NVRAM
swap area, nCode selects code pages to swap out and sup-
ports XIP of code pages in swap area. We use this metric to
evaluate the effect of write reduction of nCode. To collect
this metric, we run each application of a certain category in
foreground for 1 minute, and all the applications in that cat-
egory are run in round robin order for four times. Thus, 20
minutes are required for each application category to
accomplish the evaluation. We compare the number of
swap-outs between nCode and NVM-Swap.

2) Application relaunching delay: Application relaunching
delay is an important performance metric for smartphone
users. Application relaunching may cause victim pages to
be swapped to swap area and requested pages to be loaded
from swap area, especially when the system is under mem-
ory pressure, in which situation application relaunching
may trigger lots of swap-ins and swap-outs. We use this
metric to evaluate the performance of nCode, and compare
the results between different swapping schemes. To mea-
sure the application relaunching delay, we use Swap-
Bench [26] to perform applications auto switching and
results collecting.

2) Number of page fault: Page faults in applications will
interrupt the process execution, wake up the kernel and make
it to handle the faults. We therefore use it as a performance
metric. To collect this metric, We use the UI/Application
Exerciser Monkey to generate 5,000 events to each application
and add a counter in the Android Linux kernel to count the
total number of page faults in each application category.

ZHONG ET AL.: BUILDING NVRAM-AWARE SWAPPING THROUGH CODE MIGRATION IN MOBILE DEVICES 3095
£ 30k[—e— nCode £ 30k —¢—nCode £ 30k —e— nCode £ 30k[—e—nCode
? | ~®-— Swap ? | ~®— Swap @ | @ Swap @ | ~®-—Swap
& 20k & 20k & 20k & 20k
H H H H
& 3 3 @
5 10k[5 10k[* 5 10k[5 10k[
o] I3 o]]
£ o0 ‘ ‘ £ 0 ‘ : E 0 s : £ o0 : :
5 5 5 5
zZ o0 400 800 1200 2 0 400 800 1200 2 0 400 800 1200 2 0 400 800 1200
Time (s) Time (s) Time (s) Time (s)
(a) Browser (b) Social networking (c) Multimedia (d) Gaming
£ 30k| —9—nCode £ 30k[——nCode £ 30k[——nCode £ 30k[—9—nCode
? | ~®— Swap ? | & Swap ? | & Swap ? | ~®-— Swap
& 20k & 20k & 20k & 20k
H H H H
& 3 3 @
5 10k[5 10k[5 10k[5 10k[
2 2 2 2
E O s s E 0 s s E O s s E O s s
5 5 5 5
zZ o0 400 800 1200 2 0 400 800 1200 2 0 400 800 1200 2 0 400 800 1200
Time (s) Time (s) Time (s) Time (s)
(e) Online shopping (f) News (g) Mix1 (h) Mix2

Fig. 6. Comparison of the number of swap-outs between nCode and NVM-Swap for each application category when swap size = 64 MB.

£ 5ok[—#—nCode ‘5 50k [~ nCode g 50k [~ nCode
& qok[" Swap & 4ok[—® Swap & dok[O Swap
= 30k = 30k[2 30k[
‘5 20k ‘5 20k[5 20k
8 10k B 10k[3 10k[
E o 1 , E o , , E o , ,
5 5 5 5
zZ 0 400 800 1200 2 0 400 800 1200 2 0 400 800 1200 2 0 400 800 1200
Time (s) Time (s) Time (s) Time (s)
(a) Browser (b) Social networking (c) Multimedia (d) Gaming
% 50k [~ nCode § 50k[—#— nCode % 50k[—#—nCode % 50k [~ nCode
& 40K [Swap 2 40k & 40k [~ Swap a0k Swap
= 30k = 30k = 30k = 30k
5 20k s 20k s 20k 5 20k
810k & 10k 810k 3 10k
E o . . E o . . E o . . E o . .
Z 0 401 800 1200 Z 0 400 800 1200 2 0 400 800 1200 2 0 400 800 1200
Time (s) Time (s) Time (s) Time (s)
(e) Online shopping (f) News (g) Mix1 (h) Mix2

Fig. 7. Comparison of the number of swap-outs between nCode and NVM-Swap for each application category when swap size = 128 MB.

£ 60k[—e—nCode £ 60k[—e—nCode £ 60k —— nCode £ 60k[—— nCode
4 ~0-— Swap ? ~0-— Swap N ~0-— Swap Q ~0-— Swap
& 40k[" & 40k[" g 40k[" g 40k["
H H H H
3 @ 3 3
5 20k[" 5 ZOKW 5 ZOKM S 20k[
(7] (7] [[
3 8 8 8
E o . . E o h . E o . . E o . .
z 0 400 800 1200 Z 0 400 800 1200 Z 0 400 800 1200 Z 0 400 800 1200
Time (s) Time (s) Time (s) Time (s)
(a) Browser (b) Social networking (c) Multimedia (d) Gaming
£ 60k[—4— nCode £ 60k[—4— nCode £ 60k[—4— nCode £ 60k[—@— nCode
? | —o— Swap < | —— Swap ? | —&— Swap ? | —o— Swap
& 40k & 40k § 40k § 40k
H H H H
@ 3 @ @
S 20k[* S 20k[" S 20k[" S 20k["
) 5 5 5
€ o , , € o , , E o , , E o , ,
E} E} E} E}
z 0 400 800 1200 Z 0 401 800 1200 Z 0 400 800 1200 Z 0 400 800 1200
Tlme (s) Time (s) Time (s) Time (s)
(e) Online shopping (f) News (g) Mix1 (h) Mix2

Fig. 8. Comparison of the number of swap-outs between nCode and NVM-Swap for each application category when swap size = 256 MB.

4.3 Number of Swap-Outs

Figs. 6, 7, and 8 compare the number of swap-outs between
nCode and NVM-Swap under different swap capacities. As
shown in the figures, compared to NVM-Swap, nCode can
reduce around 14-51 percent writes to the NVRAM swap
area. In nCode, by exploiting the read-only property and
NVRAM'’s byte-addressability, we migrate application’s
code pages to the swap area when the system’s memory is
under pressure, and execute the code pages in-place on the
swap area. Therefore, swap-ins are avoided, and this further
avoids page thrashing, which will increase the writes to
swap area.

As shown in the figure, along with the time increasing on
the x-axis, the number of swap-outs in nCode gradually
reaches a stable state—no more writes to swap area or the
writes are increased slowly. In Figs. 6, 7, and 8, we note that
the number of swap-outs almost stayed the same after a cer-
tain period of time, especially for browser and gaming
applications in Fig. 6, and browser, multimedia, gaming
and news applications in Fig. 7. On the contrary, the num-
ber of swap-outs in NVM-Swap keeps growing, though the
growth rate has slowed down after certain point. The major
reason behind is that when swapped out pages are written
to, we first need to allocate new pages and then copy them

3096

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO. 11,

NOVEMBER 2017

Relaunching delay (ms)

(a) Swap size = 64MB

Relaunching delay (ms)

i NVM-Swap - NAND fIash-Backed swapping

S 0 @ & & 5 > Y ¥ S e & & ¢ & & & $ L & & ») & & © & o~ S &

& & & N & & X TS & & & 4 & A L &S &

@& " K A N N O S I & & & &S A
¥ & < < <& & Yo & &

Relaunching delay (ms)

m Y ry & & ry © P S o Y Ry Y > I
&L & & & & e & A'”K K. & & & & SRS P & NG Q;;P o S & &S &
« & & P fﬁ A @ ST S C Ay & 5T
$ & @ AP ¥ <& & Yo S < &

(c) Swap size = 256MB

Fig. 9. Comparison of relaunching delay between different swapping schemes under different capacities.

back to DRAM. However, the requests for new pages may
cause other pages to be swapped out. Thus, the number of
swap-outs in NVM-Swap will keep growing over time.

In nCode, a small swap area makes applications be killed
frequently and thus code pages will be continuously written
to NVRAM when the space in swap area is reclaimed due to
process kills. On the contrary, with a large NVRAM swap
area, there would be excessive NVRAM space since the
code pages cannot use up all the NVRAM. In this situation,
inactive pages will be swapping out when the memory is
under pressure, which will bring page thrashing and conse-
quently introduces more writes. Since each application’s
code pages take around 20 percent of its corresponding
DRAM pages, in this work, we believe that the size of
NVRAM swap area should depend on the size of DRAM. In
our experiments, the memory capacity of Nexus 5 is set to
1,700 MB, in which the Android OS occupies around
500-600 MB (in our evaluation). Therefore, the available
memory for applications is around 1,100-1,200 MB and a
256 MB NVRAM swap area is sufficient to store all
application’s code pages.

4.4 Application Relaunching Delay

When relaunching an application, if the application is still
cached in DRAM, the OS simply bring the application to
foreground and start running. Otherwise, the application
data has to be reload from secondary storage or swap area if
part of the application’s data are swapped out. Therefore,
different swapping schemes will lead to different relaunch-
ing delay. Fig. 9 shows the application relaunching delay
under different swapping schemes. As shown in the figure,
nCode achieves almost the same relaunching delay when
compared with NVM-Swap, indicating that nCode can
achieve the same performance as NVM-Swap achieved.

While compared to NAND flash-based swapping, nCode
reduces the relaunching delay by around 10—40 percent.

In NAND flash-backed swapping, writing/reading a
page to/from swap area needs to go through the whole stor-
age stack, which is much slower than writing/read a page
to/from DRAM or NVRAM, making NAND flash-backed
swapping exhibits the highest relaunching delay. On the
contrary, both nCode and NVM-Swap use pure memory
copy operations to write/read pages from/to swap area,
resulting in a much faster application relaunching. In partic-
ular, the relaunching of Chrome and Opera in nCode and
NVM-Swap are around 40 percent faster than that in NAND
flash-based swapping, which means a great improvement on
user experience.

4.5 Number of Page Faults

Table 4 compares the number of page faults between nCode
and NVM-Swap. As shown, nCode reduces around
20 percent number of page faults on average compared to
NVM-Swap, further reducing the time cost by page fault han-
dler and improving application performance. In nCode, code
pages in NVRAM based swap area are accessed directly with
XIP, thus no page faults occur when accessing pages in
NVRAM. On the contrary, even through NVM-Swap features
CoWs, page faults still will be triggered when access swapped
out pages, make the kernel to setup the page table entries for
the requested pages or copy the requested pages from swap
space back to DRAM and then update the mapping.

5 RELATED WORK

There are various of previous work related to nCode. Most
of the related work lies in the following three areas: swap-
ping, NVRAM endurance prolonging and hybrid NVRAM/

ZHONG ET AL.: BUILDING NVRAM-AWARE SWAPPING THROUGH CODE MIGRATION IN MOBILE DEVICES 3097
TABLE 4
Comparison of Number of Page Faults Between nCode and NVM-Swap
Category Swap size = 128MB Swap size = 256MB Swap size = 512MB
NVM-Swap nCode 1 (%) NVM-Swap nCode 1 (%) NVM-Swap nCode 1 (%)

Browser 3,943,227 3,323,854 15.71 3,002,445 2,525,647 15.88 2,512,004 2,060,030 17.99
Social networking 3,113,747 2,211,451 2898 2,283,142 1,622,312 28.94 1,912,176 1,530,295 19.97
Multimedia 3,533,948 2,635,189 25.43 2,662,082 2,011,507 24.44 2,202,907 1,689,455 2331
Gaming 3,419,200 2,743,878 19.75 2,666,061 2,093,847 21.46 2,096,170 1,726,954 17.61
Online Shopping 3,369,403 2,989,436 11.28 2,476,821 2,340,482 5.50 2,220,993 1,819,195 18.09
News 3,154,903 2,344,854 25.68 2,465,836 1,844,587 25.19 2,121,985 1,652,561 26.83
Mix1 3,503,370 3,017,570 13.87 2,578,311 2,210,281 14.27 2,014,215 1,752,430 13.00
Mix2 3,267,316 2,677,574 18.05 2,551,028 2,013,314 21.08 2,102,842 1,680,917 20.06

DRAM main memory. In this section, we discuss these
related work separately.

Swapping. To extend memory capacity, many swapping
system have been proposed for both mobile devices and
servers. NVM-Swap [11], DR. Swap [12], [13] and Refinery
Swap [27] re-adopt swapping using NVRAM for better per-
formance and energy behavior of smartphones. MARS [28]
speed-up the application relaunching by exploiting a flash-
aware page swapping system. FASS [29] implements a raw
flash memory based swapping system without using a flash
translation layer. FlashVM [30] is another flash backed swap-
ping that integrates flash memory with virtual memory and
provides better garbage collection by batching writes.
SSDAlloc [31] is an SSD/DRAM hybrid system which
extends DRAM with SSD and allows programmers to treat
SSD as DRAM. To eliminate the performance gap between
main memory and flash based swap area, in this paper we
adopt NVRAM as swap area and use memory interface to
swap in and out. Different traditional wisdom, which choo-
ses inactive pages to swap out when the memory is under
pressure, nCode selects code pages and executes code pages
in place on the NVRAM swap area.

NVRAM endurance prolonging. Many researches have
been conducted to solve the endurance issue of NVRAM.
Chen et al. [20] introduced an age-based wear leveling
scheme which is compatible with existing virtual memory
design. Start-Gap [21] and segment swapping [18] are two
representative wear leveling algorithms that evenly distrib-
ute writes among all cells of PCM-based main memory.
NVM-Swap [11] features Heap-Wear, a heap-based wear
leveling scheme for NVRAM-based swapping. Hu et al. [32]
focus on reducing writes on NVRAM for embedded CMPs.
Qureshi et al. [33] proposed a set of techniques such as lazy
write and line level writeback to reduce writes. Khouzani
et al. [34] presented a segment-aware and wear-resistant
page allocation method to prolong the PCM lifetime. Flip-
N-Write [22] and DCW [23] try to reduce the number of bit
flips in NVRAM cells. [35] and [36] aim to prolong the life-
time of PCM-based main memory in embedded systems.
Zhang et al. [37] enhance the lifetime of PRAM while con-
sidering the process variations. Ferreira et al. [38] increase
PCM lifetime by swapping pages on page cache writebacks.
In [39], Khouzani et al. proposed a hierarchical hybrid
DRAM/PCM memory architecture, where DRAM is served
as the cache of PCM. To reduce the writes to PCM, a proac-
tive page allocation algorithm is proposed to distribute
heavily written pages across different DRAM sets. Different

from this approach, nCode is a parallel organization and
DRAM is adopted as the main memory while NVRAM is
used as the swap area. Moreover, in this paper, we aim to
build a NVRAM-aware swapping, and we reduce the writes
to NVRAM by swapping out code pages.

Hybrid NVRAM/DRAM main memory. Due to its low
standby power, high density and byte addressability,
NVRAM, such as PCM, are considered as promising DRAM
alternative [7], [17]. In [8], [40], a hybrid PCM/DRAM main
memory system is proposed, in which pages can be trans-
ferred between PCM and DRAM for saving energy and
improving PCM endurance. Qureshi et. al [33] design a
hybrid DRAM/PCM main memory where DRAM is invisi-
ble and used as on-chip cache while PCM is served as main
memory. Similarly, Chang et al. [41] use DRAM as a cache
for the PCM-based main memory but the DRAM is soft-
ware-controlled. Hassan et al. [42] proposed a software-
only approach to reduce the energy consumption in hybrid
DRAM/NVRAM memory. To improve the memory band-
width and reduce the system energy consumption, Zhao
et al. [43] proposed a hybrid GPU memory architecture by
combining different memory technologies (DRAM, STT-
RAM, and RRAM). Compared to these hybrid approaches,
trough nCode has the same or similar hardware architec-
ture, the management strategy is totally different. In hybrid
approaches, NVRAM is treated as part of the main memory
while in nCode, DRAM is served as the main memory and
NVRAM is dedicated as the swap area.

6 CONCLUSIONS

In this paper, we have proposed nCode, an NVRAM based
swapping system that aims to improve the system’s perfor-
mance and reduce writes to NVRAM. Different from tradi-
tional page frame reclaim algorithm, which selects inactive
pages and introduces page thrashing, nCode priorities code
pages as swapping candidates in smartphones since code
pages are read-only—perfect candidates to be swapped out
to write-limited NVRAM. To avoid page thrashing and fur-
ther reduce writes to NVRAM swap area, we support XIP
of code pages on the swap space without copying the code
pages back to DRAM by utilizing the byte-addressability of
NVRAM. Currently, a prototype of nCode has been imple-
mented in Google Nexus 5 smartohone. Experimental
results with various real applications show that when com-
pared to NVM-Swap, nCode can respectively reduce the
swap-outs and page faults by 30 and 20 percent on average.

3098

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO. 11,

The application relaunching delay has also been reduce by
around 10-40 percent when compared to NAND flash-
based swapping.

ACKNOWLEDGEMENTS

We would like to thank all the anonymous reviewers for
their valuable feedback and improvements to this paper.
This work is partially supported by grants from the National
Natural Science Foundation of China (61672116, 61601067
and 61472052), National 863 Program 2015AA015304,
Chonggqing High-Tech Research Program cstc2016jcyjA0332
and cstc2014yykfB40007, the Science and Technology
Research Program of Chongqing Municipal Education Com-
mission (KJ1704085). A preliminary version of this paper
was presented at the ACM/IEEE 2015 Design, Automation
& Test in Europe Conference & Exhibition (DATE) [1].

REFERENCES

[1]

[2]
[3]
[4]

[5]

[6]

[71

[8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[171

K. Zhong, et al., “nCode: Limiting harmful writes to emerging
mobile NVRAM through code swapping,” in Proc. Des. Autom.
Test Europe Conf. Exhib., 2015, pp. 1305-1310.

H. Kim, N. Agrawal, and C. Ungureanu, “Revisiting storage for
smartphones,” ACM Trans. Storage, vol. 8, no. 4, pp. 1-25, 2012.
H.S. P. Wong, et al., “Phase change memory,” Proc. IEEE, vol. 98,
no. 12, pp. 2201-2227, Dec. 2010.

M. Osomi, et al., “A novel Nonvolatile memory with spin torque
transfer magnetization switching: Spin-RAM,” in Proc. IEEE Int.
Electron Devices Meeting Tech. Dig., 2005, vol. 459, pp. 459-462.

D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, pp. 80-83,
2008.

Intel and micron produce breakthrough memory technology,
2015. [Online.] Available: https://newsroom.intel.com/news-
releases/intel-and-micron-produce-breakthrough-memory-
technology/

Z. Shao, Y. Liu, Y. Chen, and T. Li, “Utilizing PCM for energy
optimization in embedded systems,” in Proc. IEEE Comput. Soc.
Annu. Symp. VLSI, 2012, pp. 398-403.

G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A hybrid pram
and dram main memory system,” in Proc. 46th ACM/IEEE Design
Autom. Conf., 2009, pp. 664—-669.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high per-
formance main memory system using phase-change memory
technology,” in Proc. 36th Annu. Int. Symp. Comput. Archit., 2009,
pp- 24-33.

D. Narayanan and O. Hodson, “Whole-system persistence,” in
Proc. 17th Int. Conf. Archit. Support Program. Languages Operating
Syst., 2012, pp. 401-410.

K. Zhong, et al., “Building high-performance smartphones via
non-volatile memory: The swap approach,” in Proc. Int. Conf.
Embedded Softw., 2014, Art. no. 30.

K. Zhong, et al, “DR. Swap: Energy-efficient paging for
smarthpones,” in Proc. Int. Symp. Low Power Electron. Des., 2014,
pp- 81-86.

K. Zhong, et al, “Energy-efficient in-memory paging for
smartphones,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 35, no. 10, pp. 1577-1590, Oct. 2016.

K. Yan, X. Zhang, and X. Fu, “Characterizing, modeling, and
improving the GoE of mobile devices with low battery level,” in
Proc. 48th Int. Symp. Microarchitecture, 2015, pp. 713-724.

C. Xue, G. Sun, Y. Zhang, J. Yang, Y. Chen, and H. Li, “Emerging
non-volatile memories: Opportunities and challenges,” in Proc.
9th Int. Conf. Hardware/Software Codesign Syst. Synthesis, 2011,
pp. 325-334.

Y. Wang, et al., “A compression-based area-efficient recovery
architecture for nonvolatile processors,” in Proc. Des., Autom. Test
Europe Conf. Exhib., 2012, pp. 1519-1524.

B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase
change memory as a scalable DRAM alternative,” in Proc. 36th
Annu. Int. Symp. Comput. Archit., 2009, pp. 2-13.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

NOVEMBER 2017

P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy
efficient main memory using phase change memory technology,”
in Proc. 36th Annu. Int. Symp. Comput. Archit., 2009, pp. 14-23.

D. Liu, T. Wang, Y. Wang, Z. Shao, Q. Zhuge, and E. Sha,
“Curling-PCM: Application-specific wear leveling for phase
change memory based embedded systems,” in Proc. 18th Asia
South Pacific Des. Autom. Conf., 2013, pp. 279-284.

C.-H. Chen, P.-C. Hsiu, T-W. Kuo, C-L. Yang, and C.-Y. M.
Wang, “Age-based PCM wear leveling with nearly zero search
cost,” in Proc. 49th Annu. Des. Autom. Conf., 2012, pp. 453-458.

M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan,
L. Lastras, and B. Abali, “Enhancing lifetime and security of
PCM-based main memory with Start-gap wear leveling,” in Proc.
42nd Annu. IEEE/ACM Int. Symp. Microarchitecture., 2009,
pp- 14-23.

S. Cho and H. Lee, “Flip-N-Write: A simple deterministic tech-
nique to improve PRAM write performance, energy and
endurance,” in Proc. 42Nd Annu. IEEEJACM Int. Symp. Microarchi-
tecture., 2009, pp. 347-357.

B.-D. Yang, J.-E. Lee,].-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu, “A
low power phase-change random access memory using a data-
comparison write scheme,” in Proc. IEEE Int. Symp. Circuits Syst.,
2007, pp. 3014-3017.

S. Eilert, M. Leinwander, and G. Crisenza, “Phase change mem-
ory: A new memory enables new memory usage models,” in Proc.
IEEE Int. Memory Workshop, 2009, pp. 1-2.

Y. Choi, et al.,, “A 20nm 1.8V 8Gb PRAM with 40MB/s program
bandwidth,” in Proc. IEEE Int. Solid-State Circuits Conf., 2012,
pp- 46-48.

X. Zhu, D. Liu, L. Liang, K. Zhong, M. Qiu, and E. H. M. Sha,
“SwapBench: The easy way to demystify swapping in mobile sys-
tems,” in Proc. IEEE 17th Int. Conf. High Performance Comput. Com-
mun., 2015, pp. 497-502.

X. Chen, et al., “The design of an efficient swap mechanism for
hybrid DRAM-NVM systems,” in Proc. 13th Int. Conf. Embedded
Softw., 2016, pp. 22:1-22:10.

W. Guo, K. Chen, H. Feng, Y. Wu, R. Zhang, and W. Zheng,
“MARS : Mobile application relaunching speed-up through flash-
aware page swapping,” IEEE Trans. Comput., vol. 65, no. 3,
pp- 916-928, Mar. 2016.

D. Jung, J. Soo Kim, S. Yeong Park, J. Uk Kang, and J. Lee, “Fass: A
flash-aware swap system,” in Proc. Int. Workshop Softw. Support
Portable Storage., 2005.

M. Saxena and M. M. Swift, “FlashVM: Revisiting the virtual
memory hierarchy,” in Proc. 12th Conf. Hot Topics Operating Syst.,
2009, pp. 13-13.

A. Badam and V. S. Pai, “SSDAlloc: Hybrid SSD/RAM memory
management made easy,” in Proc. Symp. Netw. Syst. Des. Implemen-
tation, 2011, pp. 211-224.

J. Hu, C. J. Xue, Q. Zhuge, W.-C. Tseng, and E. H.-M. Sha, “Write
activity reduction on non-volatile main memories for embedded
chip multiprocessors,” ACM Trans. Embedded Comput. Syst.,
vol. 12, no. 3, pp. 1-27, 2013.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high per-
formance main memory system using phase-change memory
technology,” in Proc. 36th Annu. Int. Symp. Comput. Archit., 2009,
pp- 24-33.

H. A. Khouzani, Y. Xue, C. Yang, and A. Pandurangi, “Prolonging
PCM lifetime through energy-efficient, segment-aware, and wear-
resistant page allocation,” in Proc. Int. Symp. Low Power Electron.
Des., 2014, pp. 327-330.

D. Liu, T. Wang, Y. Wang, Z. Shao, Q. Zhuge, and E. H. M. Sha,
“Application-specific wear leveling for extending lifetime of
phase change memory in embedded systems,” IEEE Trans. Com-
put.-Aided Des. Integr. Circuits Syst., vol. 33, no. 10, pp. 1450-1462,
Oct. 2014.

J. Hu, Q. Zhuge, C. J. Xue, W. C. Tseng, and E. H. M. Sha,
“Software enabled wear-leveling for hybrid PCM main memory
on embedded systems,” in Proc. Des. Autom. Test Eur. Conf. Exhib.,
2013, pp. 599-602.

W. Zhang and T. Li, “Characterizing and mitigating the impact of
process variations on phase change based memory systems
(micro),” in Proc. 42nd Annu. IEEEJACM Int. Symp. Microarchitec-
ture, 2009, pp. 2-13.

A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and
D. Moss, “Increasing PCM main memory lifetime,” in Proc. Des.,
Autom. Test Europe. Conf. Exhib., 2010, pp. 914-919.

ZHONG ET AL.: BUILDING NVRAM-AWARE SWAPPING THROUGH CODE MIGRATION IN MOBILE DEVICES 3099

[39]

[40]

[41]

[42]

[43]

H. A. Khouzani, C. Yang, and J. Hu, “Improving performance and
lifetime of DRAM-PCM hybrid main memory through a proactive
page allocation strategy,” in Proc. 20th Asia South Pacific Des.
Autom. Conf., 2015, pp. 508-513.

W. Zhang and T. Li, “Exploring phase change memory and 3D
die-stacking for power/thermal friendly, fast and durable mem-
ory architectures,” in Proc. 18th Int. Conf. Parallel Archit. Compila-
tion Techn., 2009, pp. 101-112.

H.-S. Chang, Y.-H. Chang, T.-W. Kuo, and H.-P. Li, “A light-
weighted software-controlled cache for PCM-based main memory
systems,” in Proc. IEEEJACM Int. Conf. Comput.-Aided Des., 2015,
Pp- 22-29.

A. Hassan, H. Vandierendonck, and D. S. Nikolopoulos,
“Software-managed energy-efficient hybrid DRAM/NVM main
memory,” in Proc. 12th ACM Int. Conf. Comput. Frontiers., 2015,
pp- 23:1-23:8.

J. Zhao and Y. Xie, “Optimizing bandwidth and power of graphics
memory with hybrid memory technologies and adaptive data
migration,” in Proc. Int. Conf. Comput.-Aided Des., 2012, pp. 81-87.

Kan Zhong received the BSc degree in computer
science from Chongging University, Chongqing,
China, in 2013, where he is currently working
toward the PhD degree. His current research
interests include mobile computing, embedded
system, and non-volatile memory.

Duo Liu received the BE degree in computer sci-
ence from the Southwest University of Science
and Technology, Sichuan, China, in 2003, the
ME degree from the Department of Computer
Science, University of Science and Technology
of China, Hefei, China, in 2006, and the PhD
degree in computer science from the Department
of Computing, The Hong Kong Polytechnic Uni-
versity, in 2012. He is currently an assistant pro-
fessor in the College of Computer Science,
Chongging University, China. His current
research interests include emerging memory
techniques and embedded systems.

Linbo Long received the BSc and PhD degrees in
computer science from the College of Computer
Science, Chongqing University, China, in 2011 and
2016. He is currently a lecturer in the College of
Computer Science and Technology, Chongging
University of Posts and Telecommunications,
Chongging, China. His current research interests
include compiler optimization, emerging memory
techniques, and embedded systems.

Jinting Ren received the BSc degree in com-
puter science from Chongqging University,
Chongging, China, in 2016, where he is working
toward the PhD degree. His current research
interests include approximate computing and
embedded system.

Yang Li received the BSc degree in computer
science from Chongqing University, Chongging,
China, in 2015, where he is currently working
toward the master’s degree. His current research
interests include approximate computing, embed-
ded system, and emerging memory techniques.

Edwin Hsing-Mean Sha received the PhD
degree from the Department of Computer Sci-
ence, Princeton University, in 1992. From August
1992 to August 2000, he was in the Department
of Computer Science and Engineering, University
of Notre Dame. Since 2000, he has been a ten-
ured full professor in the Department of Computer
Science, University of Texas at Dallas. Since
2012, he served as the dean of College of Com-
puter Science, Chongging University, China. He
has published more than 280 research papers in
refereed conferences and journals. He has served as an editor for many
journals, and as program committee and Chairs for numerous interna-
tional conferences. He received Teaching Award, Microsoft Trustworthy
Computing Curriculum Award, NSF CAREER Award, and NSFC Over-
seas Distinguished Young Scholar Award, Chang Jiang Honorary Chair
Professorship and China Thousand Talents Program.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

