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Energy-Efficient In-Memory
Paging for Smartphones

Kan Zhong, Duo Liu, Liang Liang, Xiao Zhu, Linbo Long, Yi Wang, and Edwin Hsing-Mean Sha

Abstract—Smartphones are becoming increasingly energy-
hungry to support feature-rich applications, posing a lot of
pressure on battery lifetime and making energy consumption
a non-negligible issue. In particular, dynamic random access
memory (DRAM)-based main memory subsystem is a major
contributor to the energy consumption of mobile devices. In
this paper, we propose direct read (DR). Swap, an energy-
efficient in-memory paging design to reduce energy consumption
in smartphones. In DR. Swap, we adopt emerging energy-
efficient nonvolatile memory (NVM) and use it as the swap
area. Utilizing NVMs byte-addressability, we propose DR which
guarantees zero memory copy for read-only requests when access-
ing a page in swap area. To better understand the energy
consumption of swapping, we build an energy model to ana-
lyze the energy consumption of different paging architectures.
We evaluate DR. Swap based on the Google Nexus 5 smart-
phone, experimental results show that our technique can reduce
more than 50% energy consumption compared to DRAM backed
swapping.

Index Terms—Energy, in-memory paging (IMP), nonvolatile
memory (NVM), smartphone, swapping.

I. INTRODUCTION

THANKS to the advances in mobile microprocessors and
operating systems, smartphones nowadays integrate more

functionality than they ever had, such as the ability to install
third-party applications, multitasking and gaming. These func-
tionalities, on the one hand bring great user experiences; on
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TABLE I
COMPARING PCM, DRAM, AND NAND FLASH [8]

the other hand they accelerate the depletion of the limited
energy that could be carried by a smartphone in the form of
batteries with a capacity of around 2000–3000 mAh. Such
resource-constrained nature of smartphones in turn affects user
experience. For example, in most smartphone OSes, applica-
tions are not terminated (thus resources not released) when
they are switched to backend to allow faster switch-back.
Various daemons also keep running all the time to pull use-
ful information for the user (e.g., notifications for new instant
messages). As a result, a lot of energy is consumed by the
DRAM-based main memory to maintain these run-time data,
leading to high energy consumption.

Recent research has shown that the Samsung Galaxy S3’s
main memory, which is 1 GB DRAM can consume around
20% of the overall energy [2]. What makes the situation
worse is the trend of adopting large main memories to support
feature-rich applications. For example, Google Nexus 6 has as
much as 3 GB main memory.1 Larger main memory improves
system performance, but inevitably leads to higher energy con-
sumption [3], [4]. Moreover, the battery technology cannot
catch up with the energy demands of smartphones [5], lead-
ing to rise more pressure on battery lifetime. Thus, reducing
the energy consumption of main memory becomes critical in
smartphones. Most existing work [6], [7] suggests turning off
inactive DRAM banks or reducing memory usage. However,
these approaches may degrade performance as they essentially
reduce usable system memory.

We argue that smartphones should readopt swapping
with the help of emerging byte-addressable, nonvolatile
memory (NVM). Swapping is an effective way of extending
memory by writing inactive pages to storage spaces [9]. It has
long been a standard feature in modern OSes, but smartphones
seldom use it because of the suboptimal performance and
limited endurance of storage (NAND flash). Though flash
memory has much better energy consumption parameters than

1http://www.google.com/nexus/6
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DRAM, it could not be used as the swap area while main-
taining acceptable performance. What is more, frequent swap
in and out operations can also wear out certain flash memory
blocks quickly. Compared to flash memory, byte-addressable
NVMs such as phase change memory (PCM) [10] and mem-
ristor [11] offer not only better (near-DRAM) performance,
but also lower energy consumption. As shown in Table I,
PCM exhibits much better energy parameters when com-
pared to DRAM. It also exhibits much shorter read and
write latency when compared to NAND flash [12]. A plethora
amount of work have been proposed to further achieve near-
DRAM performance and better endurance for PCM [13]–[20].
Other NVMs such as spin-transfer torque random access
memory (STT-RAM) [21]–[23] could promise even faster per-
formance and better endurance than DRAM [24]. Therefore,
we do not specifically consider the endurance or latency issues
and focus on energy consumption in this paper. Unlike flash
memories, these emerging NVMs are byte-addressable and
can be placed on the memory bus, available to load and
store instructions. Such combination of high performance
and low energy consumption makes NVM an ideal candidate
for swapping.

In this paper, we propose an in-memory paging (IMP)
architecture called direct read (DR). Swap, to readopt swap-
ping in smartphones by replacing part of the DRAM with
NVM, and using NVM as a swap area. With less DRAM,
we reduce energy consumption, while the NVM-based swap
area extends memory capacity to still allow feature-rich
applications to run. In addition, utilizing the NVMs byte-
addressability, we allow DR for read requests directly from
the swap area, guaranteeing zero-copy for read-only (RO)
pages. With DR, read requests are satisfied by mapping the
virtual address to the physical page in the NVM-based swap
area, instead of by copying the memory page from the swap
area to user space. DR is made possible because of the byte-
addressability of NVM. In DR. Swap, the NVM-based swap
area is attached to the memory bus, eliminating I/O and
the whole storage stack overhead. With the traditional swap
approach which has to go through the whole storage stack
to access a page. With DR, we avoid unnecessary memory
copying to DRAM, furthering reduce energy consumption.
To better understand the energy behavior of swapping, we
present a fine-gained energy model to analyze the energy
consumption of different paging architectures, and we use
the proposed energy model to evaluate the energy efficiency
of DR. Swap.

In summary, we make the following contributions.
1) We revisiting swapping in smartphones and propose

an in-memory architecture with the help of byte-
addressable NVMs to reduce the energy consumption
of smartphones while maintaining high performance.

2) We propose DR to avoid unnecessary memory copy-
ing induced by RO requests, furthering reduce energy
consumption.

3) We present an data sheet-based energy model to analyze
the energy behaviors of different paging architectures.

The reminder of this paper is organized as follows. In
Section II, we give related backgrounds about swapping,

Fig. 1. Traditional NAND flash backed swapping.

energy-related issues in smartphones and emerging byte-
addressable NVM. In Section III, we present the details of
the design of DR. Swap, including the IMP architecture and
the DR optimization. In Section IV, we discuss the energy
model for different paging architectures. Evaluation results are
shown in Section V. We summarize the related work and the
conclusion in Sections VI and VII, respectively.

II. BACKGROUND

In this section, we first give the background on swapping,
and then we introduce the energy-related issues in smartphones
and the emerging byte-addressable NVM. We use Google
Android as an example as it is the most widely adopted smart-
phone OS. Note that this paper can also be extended to support
other platforms.

A. Swapping and Paging in Smartphones

Swapping is an effective way to extend memory space by
borrowing space from secondary storage devices (e.g., NAND

flash) in modern OSes [9]. With paging, swapping becomes
more flexible as processes could be swapped in and out in units
of noncontiguous pages. When the system is under pressure
and finds itself difficult to satisfy memory allocation requests,
the OS will write some inactive pages to swap area and allo-
cate these page frames to the requesting applications. Because
of the scarcity of DRAM and the abundance of disk and flash
memory in capacity, a traditional swap area is usually backed
by these two types of devices via I/O interface. The swap
area is divide into slots, each of which is precisely the size
of a DRAM page. Fig. 1 shows an embedded multi-media
card (eMMC) NAND flash memory backed swapping for smart-
phones. As shown, when the memory is under pressure, the
page frame reclaiming routine will start to select inactive pages
and swap them to the eMMC NAND flash memory. Pages that
being swapped out must go through all the storage stack to be
written to the storage medium. However, due to the subopti-
mal storage (NAND flash memory) performance, swapping is
usually not enabled by smartphones.

To avoid poor performance, mainstream mobile OSes such
as Android disables swapping and implements a low memory
killer (LMK) to reclaim memory by terminating certain pro-
cesses when the system is under memory pressure. Despite
the poor performance, we find that a swap area can signif-
icantly reduce the number of killed processes and improve
user experience, should we have high performance storage.
We plot the number of killed processes by LMK (y-axis)
with varying memory capacity (x-axis) in Fig. 2. With a
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Fig. 2. Number of processes killed with and without a swap area under
different DRAM sizes.

Fig. 3. Comparison I/O between eMMC swap and native Android OS with
swap disabled.

128 MB flash backed swap area, the number of killed pro-
cesses could be significantly reduced (e.g., from 447 to 150
with 1 GB memory). Fig. 3 highlights the amount of block I/O
induced by a flash backed swap. As shown, swapping greatly
increases I/O operations. Recent research has shown that stor-
age plays a significant role in application performance [25].
In particular, when pages are swapped out from main memory
to the on-board eMMC flash, a significant portion of band-
width is occupied, leading to suboptimal overall performance.
Moreover, the erase count of eMMC NAND flash is limited
to 105 [26] cycles, frequently writing to the swap area fur-
ther reduces the lifetime of NAND flash. Therefore, we argue
that smartphones should readopt swapping with the help of
emerging NVM to extend the main memory space.

B. Energy Consumption in Smartphones

Due to size, weight, and heat dissipation constraints, smart-
phones nowadays usually can only be equipped with batter-
ies of very limited capacity (e.g., 2000–3000 mAh). This
implies that energy becomes a first-class citizen in smart-
phones. In particular, the energy consumed by DRAM is non-
negligible [27]. The DRAM-based main memory is a major
contributor to the overall energy consumption of a smartphone.
It is reported that Samsung Galaxy S3’s 1 GB DRAM-based
main memory accounts around for 20% of its overall energy
consumption [2]. Recent mainstream phones have equipped
with 3 GB DRAM, such as Google Nexus 6, or even 4 GB
DRAM, such as ASUS Zenfone 2.2 Since DRAM requires
constant current to maintain its data, the trend of adopting large
main memories to support feature-rich applications make the

2http://www.asus.com/Phones/ZenFone_2_ZE551ML

DRAM consumes more energy. Moreover, in most smartphone
OSes, applications are not fully closed (thus resources not
released) when they are switched to backend to allow faster
switch-back. Various daemons also keep running all the time
to pull useful information for the user (e.g., notifications
for new instant messages). As a result, excessive energy is
consumed by the DRAM-based main memory to maintain
these run-time data, leading to high energy consumption.
Thus, reducing the energy consumption of DRAM-based main
memory becomes critical in smartphones. In this paper, we
reduce the energy consumption of smartphones by replac-
ing part of the DRAM with emerging byte-addressable NVM
backed swap area without sacrificing performance.

C. Emerging Byte-Addressable NVM

Emerging byte-addressable NVMs such as PCM [10], STT-
RAM [21], and memristor [11] has been extensively studied
for replacing DRAM as main memory, static random access
memory as on-chip cache, and even flash as secondary storage
due to their attractive features, such as low power con-
sumption, high density, and byte-addressability. Compared to
DRAM, which needs constant voltage to maintain its data,
NVM keeps data by changing the physical state of its under-
lying material, such as resistance level. One of the promising
candidates is PCM, which uses the state changing between
amorphous and crystalline of phase change materials (e.g.,
Ge2Sb2Te5) to record logic zeros and ones.

However, NVM is an asymmetric read–write (RW) tech-
nology, the write latency is much higher compared to the read
latency (e.g., PCM write latency is 4×–8× higher than read
latency). In this paper, we do not regard the performance of
NVM as a major problem, and we also do not concern the
underlying hardware implementation, we assume that smart-
phones with both NVM and DRAM would become possible
in the near future. The energy consumption of smartphones
and the OS software design for NVM-based swap area are the
main concerns in this paper. Particularly, we adopt PCM as
the swap device in this paper.

III. ENERGY-EFFICIENT PAGING DESIGN

In this section, we will present the details of DR. Swap,
which consists of our energy-efficient IMP architecture and
the DR optimization.

A. In-Memory Paging Architecture

Utilizing NVMs energy-efficiency and byte-addressability,
DR. Swap consists of an IMP architecture and the DR opti-
mization. Our IMP architecture attaches NVM to the memory
bus, side by side with DRAM to make it directly accessible
by the load and store instructions. Different from hybrid
memory approaches which treat NVM as part of main memory,
we dedicate the NVM region as the swap area, which is usu-
ally backed by some I/O device (e.g., NAND flash memory)
in existing systems. Compared to hybrid memories, swapping
effectively reuses the infrastructure that is already existed in
mobile OSes and much less intrusive to implement. With IMP,
swapping requests become pure memory copying, instead of

http://www.asus.com/Phones/ZenFone_2_ZE551ML
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Fig. 4. IMP architecture. We replace the traditional storage-based swap area
with memory-attached NVM. The memory management subsystem interacts
with memory, instead of I/O devices (e.g., flash) to swap in/out pages.

I/O requests, thus eliminating the need to go through all the
storage stack to access data in the swap area, and allowing
better utilization of NVMs high performance.

Since we attach NVM to the memory bus, the OS knows
NVM shares part of the physical address space with DRAM. In
this paper, we focus on the software design, and the proposed
IMP architecture also do not need any changes to the memory
controller. To let OS know which part of the whole address
space belongs to NVM and manages it as a swap area, the
e820 table need to be updated to provide information about
the underlying DRAM and NVM layouts. The OS can then
manage the NVM area by reading such information at boot
time. We still use DRAM as main memory and eMMC flash as
secondary storage for system and user data. On top of the OS
kernel, all system libraries and user space applications work
as usual.

Fig. 4 shows the details of adopting IMP in existing OSes.
When the system is under pressure (i.e., no enough memory
for satisfying allocation requests), the memory management
subsystem will try to reclaim page frames from running appli-
cations and swap them out to the swap area. We replace the
traditional swap subsystem with our NVM-based swap subsys-
tem, which accesses NVM directly without going through the
storage stack. Victim pages selected by the kernel’s page frame
reclaim routine are directly written to the swap area through
simple memcpy calls. Compared to NAND flash, though NVM
could have similar read/write power, it exhibits lower idle
power and much faster read/write speed than NAND flash.
Compare to the traditional I/O based swap architecture shown
in Fig. 1, IMP achieves both high performance and energy
efficiency.

Note that when reclaiming memory space, only anony-
mous pages (i.e., pages do not correspond to any file) can
be swapped to NVM swap area. On the contrary, for pages
correspond to a portion of a file, if these pages are modified
(i.e., dirty pages), they will be written back to their corre-
sponding backup file(s) located on the external storage (e.g.,
NAND flash). Otherwise, these clean pages will be simply dis-
carded when they are reclaimed. Moreover, when the NVM
swap area is full, it cannot allocate space to store DRAM
victim pages, and thus LMK has to start to reclaim memory
space by terminating certain processes.

(a)

(b)

Fig. 5. Overview of DR. (a) PTE for DR. Bits 0 to 11 are PTE flags, bit 5
(i.e., the 6th bit) is used to identify whether the mapped page belongs to NVM
swap area. The 6th bit is set to 1 when a page in NVM is linked to this PTE,
otherwise, it is set to 0. (b) Direct read directly maps the NVM page to user
space from the swap area, avoiding unnecessary memory copy operations for
page reads.

Currently, the IMP architecture is implemented in 32-bit
architecture. However, the technique does not have any extra
addition of complexity for the upcoming 64-bit architectures.
Instead, our IMP architecture can benefit from the 64-bit archi-
tecture, since 64-bit architecture has a much larger address
space than 32-bit architecture, and it is more flexible to arrange
DRAM and NVM compared to 32-bit architecture, in which
DRAM and NVM share a limited address space (4 GB).
Therefore, in 64-bit architecture, the capacity of NVM swap
area can be significantly extended.

B. Direct Read

In a traditional paging system based on I/O devices
(e.g., NAND flash), victim memory pages will be copied first
to the swap area and then copied back to main memory
(i.e., DRAM) when the page is requested again from the user
space. The kernel handles such requests through the page fault
handler, which reads the I/O device to fetch the requested
page, set up new page table mappings and return to the user
application. The whole operation will involve at least one
I/O device read, one DRAM page write, and one page table
entry (PTE) write. It fits nicely with its target architecture. In
the IMP architecture, the whole operation now will involve
one memory read, one memory write and one PTE write.
However, this approach incurs unnecessary memory copying,
especially for page reads, since the requested memory page
already resides in memory—the NVM—though in a different
region.

Fig. 5 illustrates the overview of DR. We use the 6th bit of a
PTE to distinguish DRAM page from NVM page in swap area,
as shown in Fig. 5(a), if the 6th bit is set to 1, the mapped
page is in NVM swap area, otherwise, the mapped page is
in DRAM. To remove unnecessary memory copy operations
between NVM and DRAM, as shown in Fig. 5(b), DR directly
sets up the PTE mappings from the user space virtual address
to the physical address of the NVM page in the swap area,
instead of first reading and then copying the page from NVM
to DRAM. In this way, we remove the need of both reading
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(a) (b) (c)

Fig. 6. Example of DR. (a) For read request, DR sets up RO mapping for the requested page directly without copying it back to DRAM. (b) Any attempt
to write the page will trigger a page fault, in the page fault hander, DR copies the requested page to DRAM. (c) DR sets up the RW mapping for the page
in DRAM.

and writing of NVM and DRAM, respectively. Compared to
the traditional approach, we save the energy for reading and
writing a whole page. The only overhead left is for the PTE
write, which only involves writing a 32-bit entry.

DR naturally utilizes the fast read performance of most
NVM technologies. Due to the asymmetric nature of most
NVMs latency (e.g., PCM has much faster reads than writes)
and wear leveling concerns, we do not allow “direct write” for
write requests, since it may introduce a great hardware over-
head. To achieve this, the hardware (i.e., memory controller)
has to be modified to determine how many times the NVM
page is written to and what is the write frequency. Different
from copy-on-write (CoW), which is usually used in creating
child process and aims to reduce the memory consumption
and improve performance, our proposed DR aims to reduce
the memory copy operations by using the byte-addressability
of NVM. Moreover, CoW copies shared DRAM pages to new
pages when they are written to. In DR, when NVM pages are
written to, they are first copied to DRAM and then returned
to the NVM swap subsystem.

Fig. 6 gives an example of DR. Assume P is a page in
swap area and now a read request is issued from user space,
instead of copying it back to DRAM and then updating the
PTE, DR sets up a read only mapping for page P and sets
the corresponding PTEs 6th bit to 1. After that, data in P can
be read directly, as shown in Fig. 6(a). Due to the mapping
of page P is read only, any write to P will trigger page fault.
In the fault handler, we first check the PTEs 6th bit, if it is
equal to 1, which means the mapped page is in swap area. In
this case, we migrate page P from NVM swap area back to
DRAM, remove the old mapping and set up the read and write
mapping for page P, then P can be written to in DRAM, as
shown in Fig. 6(b) and (c). As shown, for read only requests,
DR can avoid the unnecessary memory copy effectively.

IV. ENERGY MODEL

In this section, we build energy model to analyze the
energy consumption of different swapping schemes, including
DRAM backed swapping, NAND flash backed swapping, and
DR. Swap. Note that we dedicate ramdisk as swap area for
DRAM backed swapping. Table II lists the power and tim-
ing notations used in the proposed energy model. Based on
the model, we compare the energy consumption of different
swapping schemes in Section V, to show how much energy is
saved by our IMP architecture and the DR optimization.

TABLE II
POWER AND TIMING NOTATIONS USED IN THE ENERGY MODEL

A. DRAM Backed Swapping

In DRAM backed swapping, swap-in and swap-out are
implemented by memory copy operations—pages are copied
from/to main memory (i.e., DRAM) to/from DRAM backed
swap area (i.e., ramdisk) via memcpy(). Each memory
copy operation involves a combination of DRAM operations,
and the energy consumption of each DRAM operations con-
stitute the overall energy dissipated within the DRAM backed
swap area.

Basically, the overall energy consumption of DRAM backed
swapping is comprised of four parts: 1) background power
(i.e., PRE_PDN, PRE_STBY, ACT_PDN, ACT_STBY, and
REF); 2) active power (i.e., ACT); 3) read/write power
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(i.e., RD and WR); and 4) I/O power (i.e., DQ) [28], [29]. The
background power is the power that a DRAM chip consumes
all the time with or without operations, and it will increas-
ing along with the DRAM chip size. There are five power
states regarding the background power of DRAM as shown in
Table II. Active power is the power used when DRAM is in
active state, which performs banks activation and precharge.
Read/write power is for data read/write when DRAM is in
read/write state. I/O power is used for driving the data bus to
transmit data when DRAM is in driving data state. Therefore,
the overall energy consumption of DRAM backed swapping
is determined by

EDRAM = (
PDRAM_PRE_PDN + PDRAM_PRE_STBY

+ PDRAM_ACT_PDN + PDRAM_ACT_STBY

+ PDRAM_REF
) × tTOTAL

+ PDRAM_ACT × tACT

+ PDRAM_RD × tRD + PDRAM_WR × tWR

+ PDRAM_DQ × tDQ. (1)

Table II gives the power states of a DRAM used in this
model, whose values are calculated in terms of a 1 GB
LPDDR2-SDRAM [30]. We will discuss how to calculate the
DRAM active time (i.e., tACT), read/write time (i.e., tRD),
and driving data time (i.e., tDQ) by breaking down the swap-
in/swap-out operation in the following. Note that tTOTAL in 1
denotes the up time of DRAM backed swap area.

In DRAM backed swapping, each swap-in/swap-out
involves a sequence of DRAM operations. It must begin with
an active command to active banks and select row, and the
data is transferred from the selected row into sense amplifiers.
Then read/write commands can be issued to read/write
data from or into the sense amplifiers. After read/write data,
a precharge command must be issued to restore the data
to the cells in the selected row. We assume read/write
can be issued consecutively after the banks are activated. The
data length of each read/write is denoted by BL, the data bus
width is denoted by BW and the DRAM page size (e.g., 4 kB
in default) is denoted by Psize. Therefore, for Nrd swap-ins, we
totally need Nrd active and precharge commands, and
((Nrd × Psize × 8)/(BL × BW)) read commands. For Nwr
swap-outs, we totally need Nwr active and precharge
commands, and ((Nwr × Psize × 8)/(BL × BW)) write com-
mands. The time consumed by active banks, read/write and
driving data for Nrd swap-ins and Nwr swap-outs will be
discussed below.

For each swap-in, data become available at RLth cycle after
the first read command is issued. Since the data are trans-
mitted in double data rate (DDR), for each read command,
it takes (BL/2) cycles to drive the data output. Therefore,
the time consumed by reading Nrd pages from DRAM backed
swap area is

tRD =
(

Nrd × Psize × 8

BL × BW
× BL

2
+ Nrd × RL

)
× tCK. (2)

For each swap-out, the data shall be driven at WLth cycle
after the first write command is issued. For each write
command, it also takes (BL/2) cycles to transmit the data to

sense amplifiers and additionally tWR to restore the data to
the cells in the array. Thus, the time consumed by writing Nwr
pages to DRAM backed swap area is

tWR =
[

Nwr × Psize × 8

BL × BW
×

(
BL

2
+ tWR

)

+ Nwr × WL

]
× tCK. (3)

Read or write commands can be accepted at tRCD after
the active command is issued. Thus, the time consumed
by active operations for Nrd swap-ins and Nwr swap-outs is
determined by

tACT = tRD + tWR + (Nrd + Nwr) × tRCD. (4)

The time consumed by data driving for Nrd swap-ins and
Nwr swap-outs is determined by

tDQ = (Nrd + Nwr) × Psize × 8

BL × BW
× BL

2
× tCK. (5)

The total energy consumed by DRAM backed swap area can
be extracted from (1) after knowing the number of swap-ins
and swap-outs.

B. NAND Flash Backed Swapping

In mobile devices, eMMC, which comprises both controller
and NAND flash chips is employed as the storage system.
Therefore, we assume the NAND flash backed swap area is
built in an eMMC device, and pages are copied from/to main
memory (i.e., DRAM) to/from NAND flash backed swap area
by reading/writing NAND flash memory.

Unlike DRAMs, flash memory do not require modeling all
possible states since the operation of flash memory is much
simpler than that of DRAM. The power consumption of flash
memory is comprised of three parts: 1) read power; 2) write
power; and 3) standby power. Note that the standby power
is the power consumed by standby state, in which the flash
memory is without any operation, and it will go to sleep auto-
matically. Therefore, the overall energy dissipated in NAND

flash backed swap area is determined by

EFLASH = PFLASH_RD × tRD

+ PFLASH_WR × tWR

+ PFLASH_STBY × tSTBY. (6)

The power of each state can be extracted from the cor-
responding data sheet. Table II lists the power and timing
parameters of SanDisk iNAND Ultra eMMC [31]. According
to Table II, the power of each state can be expressed as

PFLASH_RD = VDD × IDD1 (7)

PFLASH_WR = VDD × IDD2 (8)

PFLASH_STBY = VDD × IDD3. (9)

For read operation, data become available at the RLth cycle
after the read command is issued. For write operation, data
become available at the WLth cycle after the write com-
mand is issued. We assume the eMMC device transmits data
in DDR. Thus, the time consumed by each read operation
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is (1/f )×(((RD_BL × 8)/(2 × BW))+RL) and the time con-
sumed by each write operation is (1/f ) × (((WR_BL × 8)/

(2 × BW)) + WL).
Thus, the total time consumed by reading Nrd pages from

flash backed swap area is

tRD = 1

f
×

(
RD_BL × 8

2 × BW
+ RL

)
× Nrd × Psize

RD_BL
. (10)

The time consumed by writing Nwr pages to flash backed
swap area is

tWR = 1

f
×

(
WR_BL × 8

2 × BW
+ WL

)
× Nwr × Psize

WR_BL
(11)

and the eMMC device total standby time is

tSTBY = tTOTAL − tRD − tWR. (12)

Similar to DRAM backed swapping energy model, the
energy consumed by flash backed swap area can be extracted
from (6) after knowing the total number of swap-ins and
swap-outs.

C. DR. Swap

Low power DDR (LPDDR) interface is widely adopted in
mobile devices due to its low power consumption and high
data transfer rate. Therefore, to model the energy consump-
tion of DR. Swap, we assume PCM with LPDDR interface
is adopted to build a PCM-based swap area for smartphones.
Due to the same memory interface, the power states of PCM
in smartphones are the same as that of DRAM.

Since NVM is attached to the memory bus and use memory
copy to swap in/out pages, the operations involved by swap-in
and swap-out of DR. Swap are the same as that of DRAM
backed swapping. However, compared to DRAM, PCM does
not require any refresh current to maintain its data. Thus, the
overall energy dissipated within the PCM backed swap area
is determined by

EPCM = (PPCM_PRE_PDN + PPCM_PRE_STBY

+ PPCM_ACT_PDN + PPCM_ACT_STBY)

× tTOTAL + PPCM_ACT × tACT

+ PPCM_RD × tRD + PPCM_WR × tWR

+ PPCM_DQ × tDQ. (13)

Table II lists the power states and timing parameters of
a PCM with LPDDR2 memory interface, whose power val-
ues are calculated based on the LPDDR2-PCM [32] data
sheet using the methods reported in [28] and [29]. Compared
to DRAM backed swapping, the number of swap-ins in
DR. Swap is reduced by DR. Therefore, for DR. Swap
energy model, the calculation of tWR, tACT, and tDQ are
the same as that of DRAM backed swapping energy model
except for tRD. Let N′

rd denotes the actual swap-ins (which
copy pages from PCM to DRAM) in DR. Swap, and tRD is
determined by

tRD =
(

N′
rd × Psize × 8

BL × BW
× BL

2
+ N′

rd × RL

)
× tCK. (14)

Since both DRAM backed swapping and flash backed swap-
ping do not support DR, in the above equation, N′

rd < Nrd.
Therefore, DR reduce the energy consumption by reducing
the number of swap-ins. However, as shown in the proposed
energy model, the energy consumption of different swapping
schemes not only relay on the number of swap-ins and swap-
outs, but also relay on the underlying hardware. DRAM, flash,
and PCM are three different memories, therefore exhibit very
diverse energy dissipation. We give the energy consumption
results of different swapping schemes in Section V.

V. EVALUATION

In this section, we give the evaluation results of DR. Swap.
We implement and evaluate DR. Swap based on Google
Nexus 5. Besides DR. Swap, we also implement DRAM
backed swapping (i.e., ramdisk backed swapping) and NAND

flash backed swapping for comparison. In the rest of this
section, we first describe the experimental setup, then give
the experimental metrics and methodology. Finally, we present
and discuss the experimental results.

A. Experimental Setup

We evaluate DR. Swap based on the Google Nexus 5, which
is a smartphone with a 2.3 GHz Qualcomm 8974 processor,
2 GB DRAM (i.e., LPDDR3-SDRAM), and 16 GB eMMC-
based NAND flash memory; the phone is running Android
Kitkat 4.4.4 and Linux kernel 3.4.0 which has been modi-
fied to implement DR. Swap. In order to communicate with
Nexus 5, we setup the Android debug bridge (ADB) on a
Linux machine running Fedora 21. ADB is a command line
tool provide by the Android software development kit, and it
allows a host computer to communicate with the phone via
universal serial bus (USB) in the USB debug mode. For each
test, we reboot the phone and set aside for few minutes to
ensure the device is roughly in the same state (e.g., number
of background process). For all the experiments, the phone is
full charged to make sure it is working in its full performance
capability. All the radio communication functionalities are dis-
abled except the wireless network as most applications need
Internet connection to work properly.

In the evaluation of DR. Swap, we use the PCM-based
swap area as a case study. More specifically, we adopt Micron
LPDDR2-PCM [32] as the swap area for DR. Swap. LPDDR2-
PCM is a 45 nm technology-based PCM product from Micron
with clock frequency up to 400 MHz and random read up to
400 MB/s. However, our system does not rely on any specific
type of NVM product and can be easily adopted by different
NVM-based systems. In this paper, we do not focus on which
NVM can be served as the swap area, instead, we focus on
the OS software design for NVM backed swapping. Moreover,
based on our energy model, the core parameters are the number
of swap-ins and swap-outs. Therefore, in our current imple-
mentation, we simply use a DRAM partition to simulate the
PCM-based swap area.

Compared to DRAM, PCM is slower and has limited life-
time, so we need to read/write DRAM multiple times for each
swap-in/out operation. To obtain more realistic simulation val-
ues, NVSim [33] is adopted to calculate the access latency of
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TABLE III
WORKLOAD APPLICATIONS

PCM and DRAM by feeding the corresponding parameters,
such as data width and process node. According to the cal-
culation results, the read and write performance of DRAM is
around 2× and 12× faster than that of PCM, respectively.
Therefore, for each swap-in operation (i.e., PCM read), we
read DRAM two times, and for each swap-out operation
(i.e., PCM write), we write DRAM 12 times. We believe that
future mature PCM products will provide near-DRAM perfor-
mance. The endurance issue of PCM is not considered as this
paper mainly focuses on the design of NVM-based swapping
and its energy consumption, we will study how to improve the
endurance of NVM-based swap area in future work.

B. Application Benchmark

Table III lists the workload applications we adopted in the
experiments. These applications are worldwide popular and
daily used. Since different kinds of applications may have
different memory access behaviors, we classify them into
six categories, including browser, news, multimedia, social
networking, gaming, and online shopping. To represent the
realistic scenario, we also add two mixed categories, namely
mix1 and mix2, by combining the applications selected from
the above six categories, as shown in Table III. For a category,
we run each application in foreground for 1 min, and we run
all applications in round robin order for three times. Thus,
each category needs 15 min to accomplish the evaluation. The
detailed evaluation method is described as below.

1) Browser: For each run, we open the Google search home
page, randomly type a keyword to search the results, and
then we touch the screen to check the details of the first
three search results.

2) Social Networking: Each social networking application
is signed in before the test. For each run, we first drag
down to refresh the posts, and then send a new post with
both pictures and descriptions.

3) Gaming: We use popular games in this category. For
each run, we play each game in this category for 1 min
in default settings.

4) Multimedia: We chose both video players (i.e., MX
Player, KMPlayer, and StormPlayer) and music players
(i.e., Google Play Music and TTPod) in this category.
For each video player, we play both 1080 p and 720 p
video chips, for each Music player, we play 320 kbp
music files.

5) News: For each run, we first refresh the news items, and
then select three items to see the news content which
both pictures and words.

6) Online Shopping: Each application is signed in before
the test. For each run, we randomly type a keyword to
search the products, and then click the first three items
to see the products details.

7) Mix1 and Mix2: These applications are run use the
methods described in their corresponding categories.

C. Metrics and Methodology

To evaluate the proposed technique, we run all the appli-
cations in each category to collect the following metrics. The
corresponding methodology for each experimental metric is
discussed as well.

1) Number of Memory Copy Operations: In DR. Swap, DR
is designed to reduce the number of swap-ins, we use the num-
ber of memory copy operations to measure the effectiveness of
DR. We run each category of applications shown in Table III
for 15 min. All the applications are run in the variant with DR
and without DR, respectively. We count the total number of
swap-ins for each application category and compare the results
between the two configures. For more accuracy, we run each
application category in both configurations for five times and
calculate the average value.

2) Energy Consumption: To evaluate the energy consump-
tion of DR. Swap, we run all the applications in each
application category to compare the energy consumption under
different swapping schemes, including DRAM backed swap-
ping, NAND flash backed swapping, and DR. Swap. The energy
consumption of each swapping scheme is calculated using the
energy model proposed in Section IV based on the number of
swap-ins and swap-outs.

3) Application Switching Delay: Application switching
delay is an very important performance metric for smart-
phone users. Application switching may cause inactive pages
been swapping to swap area and requested pages been load-
ing from swap area, especially when the system is under
memory pressure, where application switching may trigger
lots of swap-ins and swap-outs. Therefore, due to the per-
formance differences, different swapping schemes can lead to
different application switching delay. To collect this metric,
we run all the application shown in Table III and compare
the results between each swapping scheme. To measure the
application switching delay, we use Android am tool to per-
form auto switching between applications and use the Linux
time command to obtain the time consumed by application
switching.
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TABLE IV
MEMORY COPY OPERATION REDUCTION FOR EACH APPLICATION CATEGORY

D. Number of Memory Copy Operations

Table IV compares the number of swap-ins between DR dis-
abled and DR enabled in DR. Swap with different swap size.
As shown, DR can reduce around 50%–75% swap-ins, which
means a great number of memory copy operations are reduced.
According to Table IV, we observe lots of memory copy oper-
ations reduction for each application category. In particular,
news and social networking exhibit the highest memory copy
reduction. According to memory management of Linux kernel,
page fault is triggered when an accessed page is swapped out
to the NVM swap area. Thus, in the page fault handler, the pro-
posed DR sets up an RO mapping for the request page directly
without copying it back to DRAM. Consequently, the number
of memory copy operations is reduced between DRAM and
NVM swap area. Note that the number of page faults can-
not be reduced by DR. However, the number of page faults is
related to the physical memory size, and thus it can be reduced
by adding NVM swap area in the memory subsystem.

With DR, we reduce the number of memory copy operations
by around 50% for multimedia applications and 65% for gam-
ing and Online shopping applications, respectively. Moreover,
for browser, news, and social networking applications, DR
can reduce more than 70% of memory copy operations. In
DR, the only overhead is updating the PTEs in the page fault
handler when swapped out pages are requested. Compared to
actual swap-in, which need at least one NVM page read, one
DRAM page write, and one PTE update, the overhead of DR
is negligible.

Besides, we observe that the average number of swap-ins
decreases along with the increase of swap size. For example,
the average number of swap-ins is decreased from 3289 to 1899
when the swap size is increased from 128 to 512 MB. This
is mainly because that a larger swap area can store more
inactive pages swapped from DRAM, leading to the DRAM
have more free space to satisfy the memory requests of current
running applications. Thus, pages belong to the current running
application have less chance to be swapped out, resulting in less
swap-ins for the current running applications. However, a larger
swap area will increase the background power consumption.
In the next section, we discuss the energy consumption of
different swapping schemes.

E. Energy Consumption

Based on the number of swap-ins and swap-outs, the energy
consumption of each swapping scheme can be obtained by

using the energy model proposed in Section IV. For DRAM
backed swapping and DR. Swap, the power consumption con-
sists of background power, banks active power, data access
power (i.e., read and write), and data driving power. For NAND

flash backed swapping, the power consumption only consists
of background power and data access power. Note that for
DRAM backed swapping, the DRAM banks refresh power,
which belongs to the background power is related to the swap
size. Generally, the refresh power is proportional to the swap
size, a larger swap area leads to more refresh energy con-
sumption. As we have different swap size in our experiments,
we need to scale the DRAM refresh power according to the
swap size. Let Sswap denotes the DRAM backed swap area
size and Schip denotes the DRAM chip size which is 1 GB
in our experiment. In the calculation of DRAM backed swap-
ping energy consumption, the refresh energy is scaled with
the factor scales = (Sswap/Schip). For example, a 128 MB
DRAM backed swap area is built on a 1 GB DRAM chip,
the refresh power of DRAM backed swapping is scaled with
(128/1024) = 0.125.

Fig. 7 shows the energy consumption of different swapping
schemes with different size. The x-axis denotes the applica-
tion category and the y-axis denotes the energy consumption
in 15 min. Note that the DRAM refresh power has been scaled
according to the swap area size. As shown in Fig. 7, DRAM
backed swapping exhibits the highest energy consumption, and
NAND flash backed swapping exhibits the lowest energy con-
sumption. Along with the increasing of swap size, the energy
consumed by DRAM backed swapping keeps increasing while
the energy consumed by DR. Swap and NAND flash backed
swapping almost stay the same. This is because for DRAM
backed swapping, refresh power is proportional to the swap
size, which will increasing along with the swap size. For
DR. Swap and NAND flash backed swapping, the refresh power
is zero as neither PCM nor NAND flash requires constant volt-
age to maintain its data. Because of the limited number of
swap-ins and swap-outs during the 15 min, for DRAM backed
swapping and DR. Swap, the energy consumption is dominated
by the background energy consumption. Therefore, our results
in Fig. 7 could hardly show the difference among different
category of applications.

However, we observe uniformly much lower energy con-
sumption for DR. Swap compared to DRAM backed swapping.
DR. Swap can reduce more than 55%, 60%, and 65% energy
consumption compared to DRAM backed swapping when the
swap size is 128 MB, 256 MB, and 512 MB, respectively.
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(a) (b) (c)

Fig. 7. Comparison of the energy consumption for each application category between different swapping schemes. (a) Swap size = 128 MB. (b) Swap size =
256 MB. (c) Swap size = 512 MB.

(a) (b) (c)

Fig. 8. Comparison of the average switching delay of each application category between different swapping schemes. (a) Swap size = 128 MB. (b) Swap
size = 256 MB. (c) Swap size = 512 MB.

Since the background power of DRAM backed swapping
increases along with the swap area size, DR. Swap can achieve
more energy consumption reduction for a larger swap area.
Though NAND flash backed swapping is more energy effi-
cient compared to DRAM backed swapping and DR. Swap,
it greatly degrades performance due to the suboptimal I/O
design. Moreover, due to the limited P/E cycles of flash
memory (e.g., 105 for SLC NAND flash and 104 for MLC
NAND flash, respectively), NAND flash backed swapping can
wear out the flash memory quickly. Therefore, we conclude
that an IMP architecture with the help of emerging byte-
addressable NVM is the ultimate solution for effective and
efficient swapping for smartphones.

F. Application Switching Delay

Fig. 8 shows the average switching delay of each appli-
cation category between different swapping schemes. As
shown, DRAM backed swapping exhibits the lowest switching
delay while NAND flash backed swapping exhibits the highest
switching delay. Note that we already have emulated the access
delay for DR. Swap as we use DRAM to simulate PCM. As
shown, compared to DRAM backed swapping, DR. Swap only
exhibits slightly higher switching delay than DRAM backed
swapping. Table V lists the switching delay of each applica-
tion under different swapping schemes. Note that the time unit
is millisecond. As shown in Table V, most of the applications
take 2 s to switch back. According to Fig. 8 and Table V,

we observe that application switching speed of DR. Swap is
uniformly faster than that of NAND flash backed swapping. For
social networking applications in Fig. 8(a), and news, multime-
dia, and gaming applications in Fig. 8(c), the switching delay
of DR. Swap even lower than that of DRAM backed swap-
ping. For instance, as shown in Table V, the switching delay of
Twitter in DR. Swap with a 128 MB size is 2093 ms, it is lower
than that in DRAM backed swapping, which is 2150 ms. This
is mainly because when swapping a page to DRAM backed
swap area, which indeed is ramdisk-based, it still need to
go through a “fake” I/O path. Though it finally call memcpy
to copy inactive DRAM pages to ramdisk, the fake I/O path
still leads to extra overheads. Therefore, DR. Swap sometimes
even faster than DRAM backed swapping.

For NAND flash backed swapping, writing/reading a page
to/from swap area needs to through the whole storage stack,
which is much slower than writing/read a page to/from DRAM
or PCM. As shown in Fig. 8, application switching speed
of DR. Swap is around 10% faster than that of NAND flash
backed swapping. For browser applications, the application
switching speed of DR. Swap is even more than 25% faster
than that of NAND flash backed swapping. Therefore, we con-
clude that application switching speed of DR. Swap is faster
than that of NAND flash backed swapping, leading to a better
user experience. We also observe that for news application, the
switching speed only has a little improvement over the NAND

flash backed swapping. The reason is that the size of news
applications is smaller than that of other application categories.
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TABLE V
APPLICATION SWITCHING DELAY OF EACH APPLICATION UNDER DIFFERENT SWAPPING SCHEME (UNIT: ms)

As shown in Table III, the average size of news applications,
which is around 15 MB, is more than 3× smaller than that of
browser applications, which is around 50 MB. Moreover, news
applications require less memory space than browser appli-
cation. The smaller application size and moderate memory
consumption of news applications lead to less swap-outs and
swap-ins. Therefore, he switching speed of news applications
of DR. Swap only exhibit small improvement over that of
NAND flash backed swapping.

As shown in Fig. 8, DRAM backed swapping also achieves
faster switching speed than NAND flash backed swapping.
However, as shown in Fig. 7, the energy consumption of
DRAM backed swapping is about 3× higher than that of
DR. Swap. According to the energy consumption analysis and
application switching delay evaluation, DR. Swap can achieve
near DRAM backed swapping performance while consumes
3× less energy than DRAM backed swapping. Therefore,
DR. Swap can reduce the energy consumption and improve
performance of smartphones.

VI. RELATED WORK

In this section, we discuss the related work of this paper
from the following three aspects: 1) flash-based swapping
system; 2) energy reduction for smartphones; and 3) hybrid
PCM/DRAM main memory.

A. Flash-Based Swapping System

There are several newly proposed flash-based swapping
systems. Jung et al. [34] designed and implemented flash-
aware swap system, which is a raw flash memory-based
swapping system without using a flash translation layer.
FlashVM [35] is another flash backed swapping, which inte-
grates flash memory with virtual memory and provides better
garbage collection by batching writes. SSDAlloc [36] is an
solid state drive (SSD)/DRAM hybrid system which extends
DRAM with SSD and allows programmers to treat SSD as
DRAM. Recently, Kim et al. [25] evaluated the impact of sub-
optimal NAND flash-based storage in smartphones and report
that storage plays a significant role in application performance.
To eliminate the performance gap between main memory and
flash-based swap area, we replace flash memory with emerg-
ing byte-addressable NVM and adopt it as swap area, swap
in/out is through memory interface.

B. Energy Reduction for Smartphones

Reducing energy consumption in smartphones has been
a focus in the research community. Wang et al. [37] used
profile-based battery traces which are easy to acquire from
any smartphones to estimate the power consumption of mobile
applications. To better understand energy consumption in
smartphones, Perrucci et al. [4] measured and compared the
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energy consumed by different components in mobile devices,
it allows the reader to understand what the energy hungry
parts of a mobile device are and provides guidelines to design
future mobile protocols and applications. Chen et al. [38] con-
ducted comprehensive power measurements of the smartphone
radio components on some representative applications. Li and
John [39] profiled run-time OS characteristics and propose a
routine based OS-aware microprocessor resource adaptation
mechanism to reduce run-time OS power. Chen et al. [40]
analyzed the energy consumption of active matrix organic
light emitting diode screen. Nixon et al. [41] focussed on
reduce the mobile graphics processing unit (GPU) power
consumption through dynamic resolution and frame rate scal-
ing. Shen et al. [42] proposed an energy-efficient caching
and prefetching by considering the characteristics of mobile
systems such as data update and user request patterns.
Lee et al. [43] focussed on the optimization of the power
delivery network (PDN) in smartphones. In this paper, we
reduce the smartphone energy consumption by replacing part
of DRAM with emerging NVM and using it as swap area.

C. Hybrid PCM/DRAM Main Memory

Due to its low standby power, high density, and byte
addressability, PCM is considered as a promising DRAM alter-
native [17], [44]. In [45] and [46], a hybrid PCM/DRAM main
memory system is proposed where pages can be transferred
between PCM and DRAM for saving energy and improving
PCM lifetime. Qureshi et al. [47] proposed a hybrid main
memory organization with on-chip DRAM cache and PCM
main memory, in which DRAM is not visible to OS and man-
aged by the dedicated memory controller. Different from the
architecture proposed in [47], in our architecture, DRAM is
served as the main memory and NVM is used as the swap
area, and both DRAM and NVM are visible to OS. In [48], a
flat structure of hybrid DRAM/PCM for single-chip CPU/GPU
is proposed considering the tight requirements of low latency
from CPU and the relative tolerance to long latency from GPU.
Park et al. [49] addressed the power management of hybrid
DRAM/PCM main memory and utilize PCM to reduce the
DRAM refresh energy. Khouzani et al. [50] aimed to improve
the performance and lifetime of PCM/DRAM main memory
through a proactive page allocation algorithm. Though we have
the same or similar hardware architecture compared to these
hybrid memories, the software or the management strategy is
totally different. In the hybrid approaches, PCM is treated as
main memory and the space is managed by the OS memory
management component for allocation and deallocation. In
our architecture, we adopt PCM as the swap area and the
space is managed by the swap subsystem, which in charge
of allocation swap space to store inactive pages swapped out
from DRAM.

VII. CONCLUSION

Reducing energy consumed by DRAM is critical for saving
battery lifetime in smartphones. Emerging NVMs energy-
efficiency and byte-addressability make it an attractive swap-
ping solution for swapping in smartphones. In this paper, we

have proposed DR. Swap, an energy-efficient IMP architecture
to reduce energy consumption in smartphones. We readopt
swapping in smartphones by replacing part of the DRAM
with NVM, and using it as a swap area. We also modified the
Android Linux kernel to replace the traditional swap subsys-
tem with our NVM swap subsystem. To avoid the unnecessary
memory copy operations, we propose the DR optimization,
instead of copying the request page from NVM to DRAM,
we directly set up an RO mapping for the requested page
and then process can read it directly. With DR, we guarantees
zero memory copy operations for RO pages in swap area. To
understanding the energy behavior of swapping, we present a
fine-gained energy model to analyze the energy consumption
of different swapping scheme.

DR. Swap does not target at any specific NVM products
and any NVM can be adopted in our architecture. We imple-
ment the proposed techniques into Android’s Linux kernel
and use PCM as a case study. Experimental results based
on Google nexus 5 show that DR optimization can reduce
around 50%–75% swap-ins, which means a great number of
memory copy operations are reduced. Compared to DRAM
backed swapping, DR. Swap can reduce more than 60% energy
consumption. Compared to NAND flash backed swapping,
DR. Swap can reduce the application switching delay around
10% on average. We therefore conclude that swapping with the
help of emerging byte-address NVM should be readopted to
build both energy efficient and high-performance smartphones.
We expect this paper can serve as a first step toward the full
exploration of NVM-based swapping in smartphones.

REFERENCES

[1] K. Zhong et al., “DR. Swap: Energy-efficient paging for smart-
phones,” in Proc. Int. Symp. Low Power Electron. Design (ISLPED),
San Francisco, CA, USA, 2014, pp. 81–86.

[2] A. Carroll and G. Heiser, “The systems hacker’s guide to the galaxy
energy usage in a modern smartphone,” in Proc. 4th Asia-Pac. Workshop
Syst. (APSys), Singapore, 2013, Art. ID 5.

[3] R. Duan, M. Bi, and C. Gniady, “Exploring memory energy optimiza-
tions in smartphones,” in Proc. Int. Green Comput. Conf. Workshops
(IGCC), Orlando, FL, USA, 2011, pp. 1–8.

[4] G. P. Perrucci, F. H. P. Fitzek, and J. Widmer, “Survey on energy con-
sumption entities on the smartphone platform,” in Proc. IEEE 73rd Veh.
Technol. Conf. (VTC), Budapest, Hungary, 2011, pp. 1–6.

[5] A. Agrawal. (2010). Trends in Wireless Communications. [Online].
Available: http://www.ieeeinfocom.org/2010/docs/Infocom2010_
keynote.pdf

[6] H. Huang, P. Pillai, and K. G. Shin, “Design and implementation of
power-aware virtual memory,” in Proc. Annu. Conf. USENIX Annu. Tech.
Conf. (ATEC), San Antonio, TX, USA, 2003, pp. 57–70.

[7] M. Lee, E. Seo, J. Lee, and J.-S. Kim, “PABC: Power-aware buffer
cache management for low power consumption,” IEEE Trans. Comput.,
vol. 56, no. 4, pp. 488–501, Apr. 2007.

[8] S. Eilert, M. Leinwander, and G. Crisenza, “Phase change memory:
A new memory enables new memory usage models,” in Proc. IEEE Int.
Memory Workshop (IMW), Monterey, CA, USA, 2009, pp. 1–2.

[9] J. Park, H. Han, and S. Cho, “Extending main memory with flash—
The optimized SWAP approach,” in Proc. Non-Volatile Memories
Workshop (NVMW), San Diego, CA, USA, 2014.

[10] H.-S. P. Wong et al., “Phase change memory,” Proc. IEEE, vol. 98,
no. 12, pp. 2201–2227, Dec. 2010.

[11] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, pp. 80–83, May 2008.

[12] C. J. Xue, “Emerging non-volatile memories: Opportunities and
challenges,” in Proc. 9th Int. Conf. Hardw./Softw. Codesign Syst.
Synth. (CODES+ISSS), Taipei, Taiwan, 2011, pp. 325–334.

http://www.ieeeinfocom.org/2010/docs/Infocom2010_keynote.pdf
http://www.ieeeinfocom.org/2010/docs/Infocom2010_keynote.pdf


ZHONG et al.: ENERGY-EFFICIENT IMP FOR SMARTPHONES 1589

[13] D. Liu et al., “Application-specific wear leveling for extending lifetime
of phase change memory in embedded systems,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 33, no. 10, pp. 1450–1462,
Oct. 2014.

[14] S. Cho and H. Lee, “Flip-N-Write: A simple deterministic technique
to improve PRAM write performance, energy and endurance,” in Proc.
42nd Annu. IEEE/ACM Int. Symp. Microarch. (MICRO), New York, NY,
USA, 2009, pp. 347–357.

[15] J. Hu, C. J. Xue, Q. Zhuge, W.-C. Tseng, and E. H.-M. Sha, “Write
activity reduction on non-volatile main memories for embedded chip
multiprocessors,” ACM Trans. Embedded Comput. Syst., vol. 12, no. 3,
2013, Art. ID 77.

[16] L. Jiang, B. Zhao, Y. Zhang, J. Yang, and B. R. Childers, “Improving
write operations in MLC phase change memory,” in Proc. IEEE 18th
Int. Symp. High Perform. Comput. Archit. (HPCA), New Orleans, LA,
USA, 2012, pp. 1–10.

[17] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable DRAM alternative,” in Proc. 36th Annu. Int. Symp.
Comput. Archit. (ISCA), Austin, TX, USA, 2009, pp. 2–13.

[18] D. Liu, T. Wang, Y. Wang, Z. Qin, and Z. Shao, “PCM-FTL: A
write-activity-aware NAND flash memory management scheme for
PCM-based embedded systems,” in Proc. IEEE 32nd Real-Time Syst.
Symp. (RTSS), Vienna, Austria, 2011, pp. 357–366.

[19] M. K. Qureshi et al., “Enhancing lifetime and security of PCM-based
main memory with start-gap wear leveling,” in Proc. 42nd Annu.
IEEE/ACM Int. Symp. Microarch. (MICRO), New York, NY, USA, 2009,
pp. 14–23.

[20] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy effi-
cient main memory using phase change memory technology,” in Proc.
36th Annu. Int. Symp. Comput. Archit. (ISCA), Austin, TX, USA, 2009,
pp. 14–23.

[21] M. Hosomi et al., “A novel nonvolatile memory with spin torque trans-
fer magnetization switching: Spin-RAM,” in Proc. IEEE Int. Electron
Devices Meeting (IEDM), Washington, DC, USA, 2005, pp. 459–462.

[22] F. Oboril, R. Bishnoi, M. Ebrahimi, and M. B. Tahoori, “Evaluation
of hybrid memory technologies using SOT-MRAM for on-chip cache
hierarchy,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 34, no. 3, pp. 367–380, Mar. 2015.

[23] W. Wen, Y. Zhang, Y. Chen, Y. Wang, and Y. Xie, “PS3-RAM: A
fast portable and scalable statistical STT-RAM reliability/energy analy-
sis method,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 33, no. 11, pp. 1644–1656, Nov. 2014.

[24] A. Jog et al., “Cache revive: Architecting volatile STT-RAM caches
for enhanced performance in CMPs,” in Proc. 49th ACM/EDAC/IEEE
Design Autom. Conf. (DAC), San Francisco, CA, USA, 2012,
pp. 243–252.

[25] H. Kim, N. Agrawal, and C. Ungureanu, “Revisiting storage for
smartphones,” ACM Trans. Storage, vol. 8, no. 4, 2012, Art. ID 14.

[26] J. Cooke, Flash Memory Technology Direction. Boise, ID, USA: Micron
Technol., 2007.

[27] A. Carroll and G. Heiser, “An analysis of power consumption in a smart-
phone,” in Proc. USENIX Conf. USENIX Annu. Tech. Conf. (USENIX
ATC), Boston, MA, USA, 2010, p. 21.

[28] Micron Inc. (2001). TN-41-01: Calculating Memory System Power
for DDR3. [Online]. Available: http://www.micron.com/∼/media/
documents/products/technical-note/dram/tn41_01ddr3_power.pdf

[29] L. Wehmeyer and P. Marwedel, Fast, Efficient and Predictable Memory
Accesses. Dordrecht, The Netherlands: Springer, 2006.

[30] Micron Inc. (2014). Automotive LPDDR2 SDRAM. [Online]. Available:
http://www.micron.com/∼/media/documents/products/data-sheet/dram/
mobile-dram/low-power-dram/lpddr2/2gb_automotive_lpddr2_u89n.pdf

[31] SanDisk iNAND e.MMC 4.41 1/F—Data Sheet, SanDisk Corporation,
Milpitas, CA, USA, 2011.

[32] LPDDR2-PCM Phase Change Memory 45nm Discrete, Micron Inc.,
Boise, ID, USA, 2011.

[33] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 31, no. 7,
pp. 994–1007, Jul. 2012.

[34] D. Jung, J. S. Kim, S. Y. Park, J. U. Kang, and J. Lee, “FASS: A flash-
aware swap system,” in Proc. Int. Workshop Softw. Support Portable
(IWSSPS), San Francisco, CA, USA, 2005.

[35] M. Saxena and M. M. Swift, “FlashVM: Revisiting the virtual memory
hierarchy,” in Proc. Workshop Hot Topics Oper. Syst. (HotOS), 2009,
p. 13.

[36] A. Badam and V. S. Pai, “SSDAlloc: Hybrid SSD/RAM memory
management made easy,” in Proc. Symp. Netw. Syst. Design
Implement. (USENIX NSDI), Boston, MA, USA, 2011, pp. 211–224.

[37] C. Wang, F. Yan, Y. Guo, and X. Chen, “Power estimation for mobile
applications with profile-driven battery traces,” in Proc. IEEE Int.
Symp. Low Power Electron. Design (ISLPED), Beijing, China, 2013,
pp. 120–125.

[38] X. Chen, Y. Chen, M. Dong, and C. Zhang, “Demystifying energy
usage in smartphones,” in Proc. 51st Annu. Design Autom. Conf. (DAC),
San Francisco, CA, USA, 2014, pp. 1–5.

[39] T. Li and L. K. John, “Operating system power minimization through
run-time processor resource adaptation,” Microprocess. Microsyst.,
vol. 30, no. 4, pp. 189–198, 2006.

[40] X. Chen, Y. Chen, Z. Ma, and F. C. A. Fernandes, “How is energy
consumed in smartphone display applications?” in Proc. 14th Workshop
Mobile Comput. Syst. Appl. (HotMobile), 2013, Art. ID 3.

[41] K. W. Nixon, X. Chen, H. Zhou, Y. Liu, and Y. Chen, “Mobile GPU
power consumption reduction via dynamic resolution and frame rate
scaling,” in Proc. 6th Workshop Power-Aware Comput. Syst. (HotPower),
Broomfield, CO, USA, 2014, p. 5.

[42] H. Shen, M. Kumar, S. K. Das, and Z. Wang, “Energy-efficient data
caching and prefetching for mobile devices based on utility,” Mobile
Netw. Appl., vol. 10, no. 4, pp. 475–486, 2005.

[43] W. Lee, Y. Wang, D. Shin, N. Chang, and M. Pedram, “Optimizing
the power delivery network in a smartphone platform,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 33, no. 1, pp. 36–49,
Jan. 2014.

[44] Z. Shao, Y. Liu, Y. Chen, and T. Li, “Utilizing PCM for energy optimiza-
tion in embedded systems,” in Proc. IEEE Comput. Soc. Annu. Symp.
VLSI (ISVLSI), Amherst, MA, USA, 2012, pp. 398–403.

[45] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A hybrid PRAM and
DRAM main memory system,” in Proc. 46th Annu. Design Autom. Conf.
(DAC), San Francisco, CA, USA, 2009, pp. 664–669.

[46] W. Zhang and T. Li, “Exploring phase change memory and 3D
die-stacking for power/thermal friendly, fast and durable memory archi-
tectures,” in Proc. 18th Int. Conf. Parallel Archit. Compilation Tech.
(PACT), Raleigh, NC, USA, 2009, pp. 101–112.

[47] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,”
in Proc. 36th Annu. Int. Symp. Comput. Archit. (ISCA), Austin, TX,
USA, 2009, pp. 24–33.

[48] D. Kim et al., “Hybrid DRAM/PRAM-based main memory for single-
chip CPU/GPU,” in Proc. 49th Annu. Design Autom. Conf. (DAC),
San Francisco, CA, USA, 2012, pp. 888–896.

[49] H. Park, S. Yoo, and S. Lee, “Power management of hybrid
DRAM/PRAM-based main memory,” in Proc. 48th Design Autom.
Conf. (DAC), New York, NY, USA, 2011, pp. 59–64.

[50] H. A. Khouzani, C. Yang, and J. Hu, “Improving performance and
lifetime of dram-PCM hybrid main memory through a proactive page
allocation strategy,” in Proc. 20th Asia South Pac. Design Autom.
Conf. (ASP-DAC), Chiba, Japan, 2015, pp. 508–513.

Kan Zhong received the B.Sc. degree in computer
science from Chongqing University, Chongqing,
China, in 2013, where he is currently pursuing the
Ph.D. degree.

His current research interests include mobile
computing, embedded system, and nonvolatile
memory.

Duo Liu received the B.E. degree in computer
science from the Southwest University of Science
and Technology, Sichuan, China, in 2003, the M.E.
degree from the Department of Computer Science,
University of Science and Technology of China,
Hefei, China, in 2006, and the Ph.D. degree in com-
puter science from the Department of Computing,
Hong Kong Polytechnic University, Hong Kong,
in 2012.

He is currently an Assistant Professor with
the College of Computer Science, Chongqing

University, Chongqing, China. His current research interests include emerging
memory techniques and embedded systems.

http://www.micron.com/~/media/documents/products/technical-note/dram/tn41_01ddr3_power.pdf
http://www.micron.com/~/media/documents/products/technical-note/dram/tn41_01ddr3_power.pdf
http://www.micron.com/~/media/documents/products/data-sheet/dram/mobile-dram/low-power-dram/lpddr2/2gb_automotive_lpddr2_u89n.pdf
http://www.micron.com/~/media/documents/products/data-sheet/dram/mobile-dram/low-power-dram/lpddr2/2gb_automotive_lpddr2_u89n.pdf


1590 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 35, NO. 10, OCTOBER 2016

Liang Liang received the B.E. and M.E. degrees
from the Southwest University of Science and
Technology, Sichuan, China, in 2003 and 2006,
respectively, and the Ph.D. degree in communica-
tion and information system from the University
of Electronic Science and Technology of China,
Chengdu, China, in 2012.

She is currently a Lecturer with the College of
Communication Engineering, Chongqing University,
Chongqing, China. Her current research interests
include wireless communication and optimization,

green radio, and wireless sensor networks.

Xiao Zhu received the B.Sc. degree in computer sci-
ence from Chongqing University, Chongqing, China,
in 2014, where he is currently pursuing the master’s
degree.

His current research interests include mobile com-
puting, embedded system, and emerging memory
techniques.

Linbo Long received the B.S. degree from
the College of Computer Science, Chongqing
University, Chongqing, China, in 2011, where he is
currently pursuing the Ph.D. degree.

His current research interests include compiler
optimization, emerging memory techniques, and
embedded systems.

Yi Wang received the B.E. and M.E. degrees
in electrical engineering from the Harbin Institute
of Technology, Harbin, China, in 2005 and
2008, respectively, and the Ph.D. degree in com-
puter science from the Department of Computing,
Hong Kong Polytechnic University, Hong Kong,
in 2011.

He is currently an Associate Professor with
the College of Computer Science and Software
Engineering, Shenzhen University, Shenzhen, China.
His current research interests include embedded

systems and real-time scheduling for multicore systems.

Edwin Hsing-Mean Sha received the Ph.D.
degree from the Department of Computer Science,
Princeton University, Princeton, NJ, USA, in 1992.

From 1992 to 2000, he was with the Department
of Computer Science and Engineering, University
of Notre Dame, Notre Dame, IN, USA. Since
2000, he has been a tenured Full Professor with
the Department of Computer Science, University of
Texas at Dallas, Richardson, TX, USA. Since 2012,
he has been the Dean with the College of Computer
Science, Chongqing University, Chongqing, China.

He has published over 280 research papers in refereed conferences and
journals.

Prof. Sha was a recipient of the Teaching Award, the Microsoft Trustworthy
Computing Curriculum Award, the NSF CAREER Award, the NSFC Overseas
Distinguished Young Scholar Award, the Chang Jiang Honorary Chair
Professorship, and the China Thousand Talents Program. He has served as
an Editor for many journals, and the Program Committee and the Chair for
numerous international conferences.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


