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Abstract—Smartphones are getting increasingly high-performance with advances in mobile processors and larger main memories to

support feature-rich applications. However, the storage subsystem has always been a prohibitive factor that slows down the pace of

reaching even higher performance while maintaining good user experience. Despite today’s smartphones are equipped with

larger-than-ever main memories, they consume more energy and still run out of memory. But the slow NAND flash based storage

vetoes the possibility of swapping—an important technique to extend main memory—and leaves a system that constantly terminates

user applications under memory pressure. In this paper, we propose NVM-Swap by revisiting swapping for smartphones with fast,

byte-addressable, non-volatile memory (NVM) technologies. Instead of using flash, we build the swap area with NVM, to allow high

performance without sacrificing user experience. NVM-Swap supports Lazy Swap-in, which can reduce memory copy operations by

giving the swapped out pages a second chance to stay in byte-addressable NVM backed swap area. To avoid fast worn-out of certain

NVM, we also propose Heap-Wear, a wear leveling algorithm that distributes writes in NVMmore evenly. Evaluation results based on

the Google Nexus 5 smartphone show that our solution can effectively enhance smartphone performance and achieve better

wear-leveling of NVM.

Index Terms—Smartphone, swapping, non-volatile memory, application relaunching delay

Ç

1 INTRODUCTION

SMARTPHONES are not just phones any more as more func-
tionality being integrated. With features such as instal-

ling third-party applications and multi-tasking, today’s
smartphones offer unprecedented user experience. How-
ever, this comes with a price: the richer functionality
an application can provide, the more demanding it is on
computing, memory and storage resources. Fast mobile pro-
cessors and large low power main memories have always
been heralding the direction of satisfying such demands
and the trend is likely to continue. Moreover, since applica-
tions may launch multiple times in smartphones, modern
mobile OS, such as Android tends to cache as many as pos-
sible applications in memory to accelerate the application
relaunching, making the application switching seamless for
smartphone users.

However, caching applications makes the memory
capacity a crucial factor for smartphone performance. Due

to the space and power budget constraint, the memory
capacity in smartphone is usually limited and only moder-
ate number of applications can be cached. To reclaim mem-
ory space, applications are constantly terminated (“killed”)
when memory is under pressure, making the terminated
(“killed”) applications take a long time to restore to their
previous states when they are launched again or switched
to foreground. Moreover, due to the increasingly complex-
ity of modern applications, it is difficult for applications to
restore to the exactly same previous states when they are
switched back. Therefore, mobile applications cannot be
simply killed when the system’s memory is under pressure.

Page swapping is an effective way to extend main
memory by enabling the ability of writing inactive pages
to secondary storage. With swapping, applications can
reside in memory by writing part of their data to swap
area. To show the effectiveness of swapping, in Fig. 1, we
compare the number of process terminations between
swap disabled and flash backed swap enabled when run-
ning a mixture of applications for 30 minutes in a Google
Nexus 5 smartphone.1 With different memory capacities
on the X-axis, swapping can help reduce around 66 to 91
percent of process terminations, greatly lowering the
chance of an application being terminated when the sys-
tem is short for memory.

Nevertheless, there are still several issues that make page
swapping disabled by default in Android Linux kernel.
First, the NAND flash memory has been evolving very
slowly and its speed failing to catch up with the speed of
mobile processors. Therefore, loading pages from flash
backed swap area is usauslly slow. Second, current most
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mobile devices adopt eMMC2 as their storage system due to
its low-cost and high-density. Since eMMC devices have
limited bandwidth, loading/writing pages from/to flash
backed swap area can lead to I/O contentions, and thus
potentially slowing down the normal I/O operations.
Finally, frequent page swap ins/outs potentially exacerbate
wear-out and increase garbage collection overhead of flash
memory. Therefore, we argue that swapping needs to be
redesigned with emerging memory technologies.

Emerging byte-addressable, non-volatile memory (NVM)
technologies such as phase change memory (PCM) [2], spin-
transfer torque RAM (STT-RAM) [3] and memristor [4] are
changing this situation. Compared to NAND flash, these
NVM products offer not only faster (near-DRAM) perfor-
mance, but also larger erase cycles. Therefore, we propose
to re-adopt swapping with the help of NVM. Instead of
using flash memory, we build the swap area with NVM, to
avoid constant process termination while maintaining good
performance. Unlike flash memory, NVM is byte-address-
able and can be manufactured as DIMMs to be placed on
the memory bus, available to load and store instructions
and thus removing all the overhead induced by the storage
stack. Such combination of high-performance and low
energy consumption makes NVM an attractive candidate
for swapping in smartphones.

In this paper, we revisit swapping in smartphones and
propose NVM-Swap, an NVM-based approach to build
high-performance swapping without sacrificing user expe-
rience. NVM-Swap re-adopts swapping in smartphones by
augmenting the DRAM with NVM and using it as the swap
area, thus extending memory capacity. To avoid excessive
and unnecessary overheads from the block-based storage
stack, we utilize NVM’s byte-addressability and attach it
directly to the memory bus, so that we can access it via a
simple memory interface, instead of building a similar block
device found in Compcache [5].

To further reduce page thrashing and swap-in over-
heads, which involve memory copy operations between
DRAM and NVM, we propose Lazy Swap-in to allow pages
in NVM be read directly. When a swapped out page is
accessed, instead of swapping that page to DRAM, Lazy
Swap-in gives that page a second chance to stay in NVM
by setting up the page table mapping and returning the
page in NVM directly. Only when the page is accessed

again within a defined time interval, actual swap-in is
involved to copy that page back to DRAM. However, due to
the high write cost of NVM, we do not allow write pages in
NVM directly. When a write happens to a page in NVM, we
immediately swap in the page by copying it back to DRAM.

Despite these advantages, NVM is not perfect. In particu-
lar, most of them are vulnerable to unbalanced writes (e.g.,
PCM has limited number of programming cycles of
108-109 [2]). Pages that are swapped out could hit arbitrary
swap slots in an unbalanced manner, which shortens the
lifetime of NVM, making NVM-Swap unpractical. To elimi-
nate the negative effect brought by this issue, we propose a
heap-based wear leveling technique called Heap-Wear,
which evenly distributes pages across the whole NVM
space. As mentioned earlier, a lot of wear leveling techni-
ques have been proposed to mitigate the endurance problem
of NVM [6], [7], [8], [9], [10]. However, different from those
existing work, which usually depends on data comparison
write (DCW) [7], [11] or segment switching [12], Heap-Wear
uses a space-efficient heap structure with swap-specific
information to handle write requests. We assign each page
that is being swapped out a “young” swap slot using the
age information maintained in the heap structure. Write
requests are then more evenly distributed across all the
swap slots, resulting in a more balanced write pattern and a
more durable NVM-based swap area.

We implement NVM-Swap in Google Android 4.4.2
based on the Google Nexus 5 smartphone. In this paper, we
only focus on performance and endurance issues. We have
discussed energy related issues in previous work [13], [14].
Experimental results show that NVM-Swap can avoid ter-
minating most processes and respectively reduce applica-
tion relaunching delay and application execution time by
around 12-46 percent and 14-45 percent when compared to
NAND flash-backed swapping. In addition, with Heap-
Wear, swap slots are more uniformly written, giving us a
durable NVM-Swap.

In summary, we make the following contributions:

� We revisit swapping in smartphones and propose
NVM-Swap, which uses emerging NVM for swap-
ping, to extend memory without sacrificing
performance;

� We propose Lazy Swap-in to avoid page thrashing
and reduce swap-in overheads, furthering improv-
ing performance;

� To make NVM-Swap practical, we propose Heap-
Wear, which is a space-efficient wear leveling algo-
rithm that can extend the lifetime of NVM.

The remainder of this paper is organized as follows. Sec-
tion 2 outlines the background on swapping and NVM in
smartphones, and gives the motivation. Section 3 details the
design of NVM-Swap. Evaluation results are shown in Sec-
tion 4. We discuss related work and conclude in Sections 5
and 6, respectively.

2 BACKGROUND AND MOTIVATION

In this section, we first give the background on non-volatile
memory and swapping in smartphones, then we present
our motivation.

Fig. 1. Comparison of process terminations between swap disabled and
swap enabled when running various applications in a Google Nexus 5
smartphone (Android 4.4) for 30 minutes. Swapping can reduce around
66 to 91 percent of process terminations.

2. Embedded Multi Media Card (eMMC), usually comprised of a
NAND flash chip and a controller.
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2.1 Emerging Byte-Addressable NVM

Non-volatile memory technologies have been discovered by
computer architects to replace DRAM and even flash mem-
ory because of their low power consumption, high density
and byte-addressability. Compared to DRAM, NVM keeps
data by changing the physical state of its underlyingmaterial
without maintaining constant current. One promising candi-
date is phase change memory [2], which stores data by
changing the state of the phase change material (e.g., GST)
between amorphous and crystalline. It exhibits longer access
latency (80ns-1ms) than DRAM (20-50 ns) and also limited
write endurance (around 108-109 programming cycles) [9],
[10]. To overcome these problems, various wear leveling and
caching schemes have been proposed [6], [7], [8], [9], [10]. It
is widely accepted that the mature PCM products will fea-
ture a small DRAM/SRAM cache to provide both fast data
access and reasonable lifetimes. However, these wear-level-
ing techniques bring extra hardware overheads and are not
the perfect choices in the context of swapping, especially in
resources constrained mobile devices. We demonstrate the
write distribution of aDRAM-based swap areawithAndroid
default swap areamanagement algorithm (in Fig. 9) and find
that the endurance of NVRAM is a must solving issue to
make a practical NVM-based swap area.

Other promising NVM technologies include spin-transfer
torque RAM [3] andmemristor [4]. Both STT-RAM andmem-
ristor have the potential of providing at least DRAM perfor-
mance. However, their performance numbers are still in
constant change. For example, the reported latency for mem-
ristor ranged from hundreds of picoseconds to tens of nano-
seconds [15]. Because of its low latency (10-25 ns [3]) and non-
volatility, STT-RAM can be used to build both on-chip cache
and main memory [16]. These newer NVMs also have better
endurance behavior than both PCM andNANDflash. Should
they becomemature in the future, a unifiedNVM system that
features both NVM-based main memory and swap area
would becomepossible for even higher performance.

We argue that in general these byte-addressable NVMs are
suitable for building a high-performance swapping device in
smartphones. Despite different internals, they could all be
built as DIMMs. They also share such properties as near-
DRAM performance, better endurance than flash and low
power consumption. Thus, we do not target at any specific
type of NVM in this paper, nor dowe rely on any specific tim-
ing or endurance constraints to design our system.

2.2 Swapping

Swapping is an effective way to extend memory by borrow-
ing space from I/O devices (e.g., flash and disks) in modern
operating systems [17]. Originally, swapping refers to mov-
ing all of the memory pages of a process to storage to make
space for others. Paging, on the other hand, refers to moving
just pages of memory. With virtual memory based on pages,
swapping and paging have become synonyms. However,
swapping still means processes could be swapped in and out
in units of non-contiguous pages. To correctly describe the
proposed technique, we therefore use the term “swapping”
in this paper. When the system is under memory pressure
and finds itself difficult to satisfy memory allocation
requests, the OS will choose to write (“swap”) some inactive
memory pages to some I/O devices (the “swap area”) and

allocate these page frames to the requesting applications or
OS components. Because of the scarcity of DRAM and the
abundance of disks and flash memory in capacity, the swap
area is usually backed by these two types of devices via a
block interface. Pages that are being swapped out must go
through all the storage stack to be written in the storage
medium. Therefore, the underlying storage becomes an
important factor on swap performance. For better swap per-
formance, the servermarket has seen high-performance flash
memory based solutions, such as FlashVM [18]. However,
the situation in mobile devices is different, despite they can
also useNANDflashmemory as the swap area.

Different from enterprise-level flash-based solid state
drives, mobile NAND flash storage performs notoriously
worse [19], [20]. Therefore, swapping is usually disabled in
smartphones to avoid sacrificing performance. Take Android
as an example, instead of using a flash-based swap area, it by
defaults uses a so called “low memory killer” that constantly
monitors the system and terminates processes to make room
for incoming memory requests. Since Android 4.4, Android
allows “swap to zRAM” (a.k.a “Compcache”) [5], which com-
presses memory pages and saves them in a dedicated RAM
disk to save memory space. However, smartphones do not
have “unlimited” energy like general purpose systems. Usu-
ally they are powered by batteries with a capacity of only
around 2000-3000 mAh due to various reasons, such as size
and weight. Moreover, most smartphones do not fully close
an application (thus resources not released) when it is
switched to the background for faster switch-back. Various
daemons also keep running all the time to provide useful
information for the user (e.g., notifications for new instant
messages). These features make battery capacity scarce in
smartphone, and yet “swap to zRAM” will worsen the situa-
tion: compression needs more computation power from the
CPU, while the RAM disk requires even larger memory. Both
requirements will inevitably lead to more energy consump-
tion, making it even faster to drain the battery which is
already “always short on capacity”. Therefore, zRAM is usu-
ally disabled inmost smartphones.

2.3 Motivation

To see how swapping will affect the performance of applica-
tions in smartphones. We measure the application relaunch-
ing time when the application is under different states. To
measure the application relaunching time, we select an
open source application—WordPress,3 and analyse its
launch process. We find two activities are required during
its launching, thus we measure the launching time by
instrumenting the application source code and profiling the
launching time use Android logcat. Fig. 2 shows the profil-
ing output of Android logcat when measuring the launch-
ing time of WordPress.

Fig. 2. The profiling output of Android logcat in measuring application
launch time.

3. Code obtained from https://github.com/wordpress-mobile/
WordPress-Android
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Fig. 3 illustrates the relaunching time of WordPress
under different states. As shown in the figure, when the
application is killed in background due to insufficient mem-
ory space, the relaunching time is as long as its first startup,
which is nearly 94 percent of the baseline. In the contrary,
when it is not killed and all its data is cached in DRAM, the
relaunching time is the shortest, which is only 235 ms. How-
ever, with a flash backed swap area, when there is no suffi-
cient memory, inactive applications are swapped to swap
area rather than be killed or cached in DRAM. In this case,
the relaunching time of WordPress is 470 ms. Compared
with the case that WordPress be killed by LMK, the
relaunching time of WordPress when it is partially swapped
is reduced 75 percent, indicating that swapping can shorten
application relaunching time under low memory circum-
stances. The main reason is that for partially swapped appli-
cation, only the swapped data need to be reloaded into main
memory, which is more efficient compared to forking new
process and loading the entire application data if the appli-
cation is killed.

Nevertheless, as discussed in Section 1, flash backed
swapping is not practical in mobile devices due to the per-
formance and lifetime issues. Motivated by the advantages
of NVM and benefits brought by swapping—reducing
application terminates and accelerating application
relaunching, in this paper, we designed a novel swapping
mechanism that is backed by emerging fast NVM to extend
the memory space.

3 NVM-BASED SWAPPING

We build NVM-Swap by utilizing the byte-addressability
and non-volatility of NVM. Instead of managing NVM as a
block device and adopting the existing swap infrastructure
in modern OSes, we attach NVM directly to the memory
bus, eliminating I/O and the whole storage stack over-
heads. As we have discussed, NVM-Swap features two
additional optimizations: (1) Lazy Swap-in which reduce
memory copy operations and (2) Heap-Wear which evenly
distributes write requests across the whole swap area for
enhancing NVM durability. In the rest of this section, we
first highlight the architecture of our system by comparing
it with the existing approach. We then discuss Lazy Swap-
in and Heap-Wear in detail. Finally, we introduce the imple-
mentation of NVM-Swap in Android Linux kernel.

3.1 Architecture

In our previous work [13], we proposed the in-memory pag-
ing architecture, in which NVM is used as the swap area
and shares part of the physical address space with DRAM.

The architecture of using emerging byte-addressable NVM
as swap in smartphones differs from using a traditional I/O
device based swap (e.g., flash). We highlight this difference
in Fig. 4. In Fig. 4a we show how a traditional flash-based
swapping approach works in smartphones. As part of the
memory management subsystem, the page replacement
algorithm scans DRAM page frames for a victim when
memory is under pressure. The victim is then evicted from
DRAM and written to the swap area, via the block layer,
which is part of the storage stack. Note that swap area is
backed by flash memory, which is attached to the I/O bus.
Therefore, the swapping in/out processes must go through
the whole storage stack.

In an NVM-based swap area, as shown in Fig. 4b, swap-
ping will not involve any I/O operations as we attach the
NVM to the memory bus. Besides DRAM, the OS also sees
an NVM area which shares the same physical address space
with DRAM. We focus on the software side in this paper,
but expect the memory controller to report to the OS on the
partitioning of the physical address space, such that the OS
could know which address space range belongs to DRAM
and NVM upon start. The OS can then manage NVM via
page tables. In our system, we still use DRAM as main
memory and flash as storage. Note that in Fig. 4b the swap
area is accessed via a memory interface and becomes part of
the memory management subsystem. When the system is
under memory pressure and finds it difficult to allocate
more memory, the page frame reclaim algorithm will try to
pick victim page frames from running applications and
swap them out to NVM. The page replacement algorithm
works in the same way as before. Victim pages are directly
written to the swap area through simple memcpy calls,
instead of via expensive I/O transfers.

Compared to hybrid memories, which treat NVM as part
of main memory, swapping using NVM effectively re-uses
the infrastructure that already existed in mobile OSes and is
much less intrusive to implement. With NVM-Swap, swap-
ping becomes pure memory operations, instead of I/O

Fig. 3. Relaunching time of WordPress installed on a Nexus 5 smart-
phone with different application states. The size of the flash backed
swap area is 128 MB.

Fig. 4. Comparison between traditional flash-based swapping and NVM-
Swap. (a) A flash-based swap area requires swapping requests go
through the whole storage stack. (b) NVM-Swap uses memory interface
to access the swap area, which is backed by NVM (attached to the mem-
ory interface). Note that in NVM-Swap, the swap area becomes part of
the memory management subsystem and requires no I/O operations.
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requests, eliminating the need to go through all the storage
stack to access data in the swap area, and allowing better
utilization of NVM’s high performance. Moreover, the con-
sistency and persistence concerns of using NVM found in
hybrid memory or NVM-specific library proposals [21] do
not exist in NVM-Swap, since swap area is discarded after
use, and will be re-initialized when it is setup.

3.2 Lazy Swap-In

Though avoiding the storage stack in swapping and the
high-performance nature of NVM eliminate most overhead,
we find that page thrashing may exits and incurs extra over-
heads: pages that are swapped back from NVM may exhibit
infrequent access pattern and become inactive, conse-
quently be swapped to NVM again. For instance, suppose
that a page in NVM is accessed by a user application, which
will trigger a page fault and in the page fault handler, the
kernel reads the swap area to fetch the requested page
frame, sets up new page table mappings and return to the
user application. However, the page may only be read once
and then becomes inactive, making the page be swapped to
swap area again in page frame reclaiming. In this situation,
the whole procedure involves one swap-in (i.e., one NVM
page read and one DRAM write) and one swap-out (i.e.,
one DRAM read and one NVM write). Fortunately, NVM’s
byte-addressablity provides a great opportunity to reduce
memory copy operations for read infrequent pages, since
the requested memory page already resides in memory—
the NVM—though in a different region (the swap area).

To solve page thrashing problem, we propose Lazy Swap-
in, which allows pages in NVM be read directly without
copying them back to DRAM and gives pages a second
chance to stay in NVM. As shown in Fig. 5, referenced bit
(i.e., PG_referenced) is used to indicate whether a page is
accessed or not and the swapped bit (i.e., PG_swapped) is
used to indicate whether the page is in NVM swap area. For
swapped out pages, the referenced bit is set to ‘0’ and the
swapped bit is set to ‘1’, when accessing a page that was
swapped out, Lazy Swap-in directly sets up page table map-
pings for the requested page and updates the reference bit to
‘1’. The page then becomes available directly to the user
space. However, we do not allow consecutive reads to NVM

pages since most NVMs, such as PCM, exhibit higher read
latency than DRAM [22]. Therefore, as shown in Fig. 5, if the
NVM page (i.e., page with referenced bit set to ‘1’) is read
again within a time interval T , we do actual swap-in—copy
the page fromNVM to DRAM and update themappingwith
the page’s original access permission (i.e., permission before
the page was swapped out). Otherwise, the NVM page’s ref-
erenced bit is set to ‘0’. For the time interval T , a small T
tends to swap in pages from NVM swap area, and thus will
reduce the average read latency but increases the memory
copy operations. In contrast, a large T tends to keep pages
stay in NVM swap area, and thus will reduce the memory
copy operations but increases the average read latency. To
strike a balance between read latency and memory copy
overheads, we currently set the time interval T to 10 seconds,
which is usually the time interval for the pageout daemon
(i.e., kswapd) to wake up to swap out pages periodically.

Due to the highwrite cost and limited endurance of NVM,
we do not allow any direct write to theNVMpagewhichwas
mapped by Lazy Swap-in via page table. As shown in Fig. 5,
by marking the NVM page “read-only” in its page table
entry, any modification to the NVM page “swapped in” by
Lazy Swap-in will then trigger a page fault and we perform
actual swap-in in the page fault handler. Compared to the
traditional approach, Lazy Swap-in speed up the swap-in
process for pages that are read-only and infrequently
accessed by avoiding transferring a whole page between
NVM and DRAM. The only overhead left is one write for the
page table entry, which only involves writing a 32-bit/64-bit
entry in most today’s ARM-based smartphones. With Lazy
Swap-in, page thrashing can also be reduced by giving pages
a second chance to stay inNVM swap area.

3.3 Heap-Wear

Most emerging NVMs are vulnerable to unbalanced writes.
For example, a PCM cell can only sustain 108-109 program-
ming cycles. However, pages that are being swapped out
could hit arbitrary swap slots in an unbalanced manner by
default as the traditional swap architecture assumes a disk-
based swap area. Unbalanced writes shorten the lifetime of
NVM and could render NVM-Swap unpractical. To solve
this problem, we propose Heap-Wear, a space-efficient
wear leveling algorithm. It extends the lifetime of NVM by
maintaining the age information of swap slots and only allo-
cating young slots to store swapped-out pages. Heap-Wear
categorizes swap slots into three types: young, old and
zombie slot. Young and old slots are slots that are used
(written) for fewer and more times, respectively. Zombie
slots store valid pages that never or infrequently updated.
Consequently, zombie slots stay young while other slots
may be written frequently and become older, leading to an
unbalanced erase pattern and unpractical NVM-Swap.

To solve this problem,Heap-Wear always chooses a young
slot as the candidate for swapped-out pages, with the help of
a free slot list and a heap structure calledmin-heap. The free slot
list is a doubly linked list consisting of all unused slots, while
min-heap maintains the age information of all the swap slots.
Fig. 6 illustrates the structure of these two components. Note
that the head slot in the free slot list is always preferred as the
first choice, and the top of min-heap always records the age of
the youngest slot. Once a free slot in the head is selected for

Fig. 5. Lazy Swap-in. (1) For the first access, the page fault handler sets
up read-only (RO) permission for the requested page in NVM and the
page is read directly, thus no data are transferred between NVM and
DRAM, avoiding memory copying operations; (2-3) Two consecutive
reads or any write attempt to the page makes the page be copied from
NVM back to DRAM, and then the corresponding page table entries are
updated by the OS.
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storing a swapped-out page, we compare the age of the candi-
date to that of the top in the min-heap. If the age difference is
greater than a predefined threshold TH (i.e., the selected slot
is older), a slot exchange operation is performed (assume the
top slot currently holds a valid page), to exchange the page in
the selected candidate slot with that of the top slot. Otherwise,
write the page to the top slot directly. In contrast, if the
selected slot is younger than the top slot, the swapped-out
page is written to the selected slot. The detailed process is
depicted inAlgorithm 1.

Algorithm 1.Heap-Wear Algorithm

Input: list: free slot list, heap: slot min-heap,
TH: slot exchange threshold;

Output: slot: the selected slot;
1: head list:head;
2: top heap:top;
3: if head:age� top:age > TH then

/* Perform a slot exchange. */

4: if top is used then
5: Copy the page in top slot to head slot;
6: head:age head:ageþ 1;
7: Adjust heap to maintain the heap property;
8: Remove head slot from list;
9: Update the slot mapping table;
10: if top is referenced via page table then
11: Update all the PTEs which referenced top;
12: else
13: Remove top form list;

/* Put the victim page to top slot. */

14: top:age top:ageþ 1;
15: Adjust heap to maintain the heap property;
16: slot top;
17: else

/* Put the victim page to head slot. */

18: Remove head form list;
19: head:age head:ageþ 1;
20: Adjust heap to maintain the heap property;
21: slot head;
22: return slot;

In Heap-Wear, if a page is swapped out, the correspond-
ing PTE will record the information of that page. After
exchanging the page between two slots, we employ a map-
ping table to reflect this change. Fig. 7 shows an example of
exchanging pages between two slots. Initially, slot s1 is on
top of the min-heap and holds a swapped-out page, which

corresponds to PTE E1, that means slot s1 is not referenced
via page table. Then to allocate a slot for the victim page,
which corresponds to PTE E2, slot s2 is selected from free
slot list. Comparing the ages of slot s1 and slot s2 finds the
slot exchange condition is satisfied. Therefore, as shown,
pages in slots s1 and s2 are exchanged, with corresponding
entries in the mapping table are re-mapped (i.e., E1 maps to
s2 and E2 maps to s1). Otherwise, if slot s1 is referenced via
page table (i.e., mapped by Lazy Swap-in), we not only per-
form slot exchanging but also update all the PTEs that are
pointing to slot s1. We make all new PTEs reference slot s2
through reverse mapping—a mapping between a physical
page and the PTEs of all processes that use the page [17].

Copying a page in NVM induces constant cost, leading to
an OðlgNÞ complexity of Heap-Wear, which is actually for
maintaining the min-heap. A 128 MB swap area only needs
nomore than 1MBmainmemory space to store the data struc-
ture. With only one extra NVM page copy when exchanging
two NVM swap slots, Heap-Wear can avoid zombie slots effi-
ciently. Note that the age counter of each slot is stored at the
beginning of the NVM swap area, and the NVM memory
space is pre-computed. When the swap area is activated, the
age counters are loaded to main memory, and only synchro-
nized periodically to avoid wearing out the underlying NVM
cells. Various techniques have been proposed to solve the
crash consistency [21], [23], [24], [25], [26] problem. In this
paper, we leverage the concept of shadow paging to achieve
crash consistency of age counters. In Heap-Wear, we use two
age counter arrays—primary array and shadow array. When
writing back age counters, the age counters are first written to
the shadow age counter array. Only when the write is com-
pleted without crash, we simply change the age array pointer
to reference the shadow array through atomic operation and
make it becomes the primary array. Thus, the current primary
array will be used as shadow array in the next synchroniza-
tion. With one extra age counter array overhead, which is
very small compared to the swap area size, the crash consis-
tency of age counters can be achieved.

4 EVALUATION

We implement the prototype of NVM-Swap in Google
Android 4.4 with the kernel version ARM Linux 3.4 for the
Google Nexus 5 smartphone. There are totally around 1,000
Lines of Codes (LOCs) coding efforts within the Linux ker-
nel. In the Linux kennel, we introduce a new memory zone
and serve it as the NVM swap area for allocating NVM
page frames. The swap subsystem is modified to manage all
the pages in this NVM zone with the help of Heap-Wear.
Traditional swap in/out operations—flash reads/writes—
are replaced with pure memory copy operations. To realize

Fig. 6. The free slot list and min-heap data structure. Doubly linked list
only maintains the free NVM slots while the min-heap maintains all the
NVM slots, including used slots and free slots.

Fig. 7. Example of Heap-Wear. After exchanging the pages in s1 and s2,
the corresponding entries of mapping table are updated.
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Lazy Swap-in, we modify the page fault handler to support
read the pages in NVM swap area directly. In the rest of this
section, we first introduce the experimental setup and work-
loads applications, then we present the metrics and method-
ology. Finally, we discuss the experimental results.

4.1 Experimental Setup

We run all experiments with a Google Nexus 5 smart-
phone. It features Qualcomm Snapdragon 800 processor
clocked at 2.26 GHz and 2 GB DRAM as main memory.
Our Nexus 5 model has 16 GB internal flash storage. We
connect the smartphone to a desktop PC and use the
Android debug bridge (adb) in the Android SDK to com-
municate with it. For all experiments, we reboot the
phone and wait for a few minutes to ensure the device is
idle. During the experiments, the phone is always con-
nected to a charger to make sure it is working in its full
performance capability.

In our experiment, we use a DRAM partition to simulate
the NVM swap area since NVM products are not yet widely
available. Although our system does not rely on any specific
type of NVM and can be easily deployed in different NVM-
based systems, in the evaluation, we assume PCM is used
as the swap area. More specifically, we use Micron
LPDDR2-PCM [27], which is a 45 nm technology based
PCM product with clock frequency up to 400 MHz. Com-
pared with the DRAM of Nexus 5, which is LPDDR3-
SDRAM, the read and write latency of LPDDR2-PCM is
around 2X and 12X slower, respectively [14]. Therefore, to
simulate the access latency of PCM, for each swap-in opera-
tion (i.e., PCM read), we read DRAM 2 times, and for each
swap-out operation (i.e., PCM write), we write DRAM 12
times. We believe that future PCM products will provide
near-DRAM performance.

We test three different swapping shcemes: (1) flash-
based, (2) DRAM-based, and (3) NVM-Swap. For flash-
based swap, we use a file in the smartphone’s internal
NAND flash memory as the swap area.4 The DRAM-based
swapping is essentially a RAM disk and for showing the
overhead induced by the storage stack alone. For NVM-
Swap, as mentioned above, we use DRAM to simulate
NVM swap area by reserving a memory partition from
DRAM. For all these swapping scheme, we configure three
different swap sizes—64, 128 and 256 MB.

Table 1 lists the workload applications we used to evalu-
ate NVM-Swap in the experiments. Since different kinds of
applications may exhibit different memory access patterns,
we classify them into six categories, including browser,
news, multimedia, social networking, gaming and online
shopping. In addition, two mixed categories, namely mix1
and mix2 have been added by combining the applications
selected from the above six categories to represent the real-
istic scenario. For a certain category, we run each applica-
tion in foreground for 1 minute, and all the applications in
that category are run in round robin order for three times.
Thus, each application category needs 15 minutes to accom-
plish the evaluation.

4.2 Metrics and Methodology

To evaluate the proposed technique, we collect the results
based on the following metrics. The corresponding evalua-
tion methodology for each metric is discussed as well.

1) Number of memory copy operations: In NVM-Swap,
Lazy Swap-in is designed to reduce the number of
memory copy operations (i.e., total number of swap-
ins and swap-outs), thus we use this metric to mea-
sure the effectiveness of Lazy Swap-in. We run all
the applications in each category shown in Table 1
for 15 minutes. All the applications are run in the
variant Lazy Swap-in enabled and Lazy Swap-in dis-
abled, respectively. We count the total number of
memory copy operations between DRAM and NVM
swap area of each category in both configurations.
To achieve more accuracy, we run each category in
both configurations for five times and calculate the
average memory copy operations.

2) NVM wear-leveling: We use a synthetic workload to
evaluate the effectiveness of Heap-Wear and its per-
formance in NVM-Swap. In detail, we add two sys-
tem calls: swap_write() (writer) and swap_read

() (reader). The writer invokes the scan_swap_map
() function to get a swap slot and writes a pre-allo-
cated page to the slot. The flash and DRAM based
variants use the default version of this function in the
Linux kernel, while the function in NVM-Swap is
modified to use Heap-Wear. The reader randomly
selects a swap slot that is in use and then frees it. Note
that this experiment is synthetic and tries to evaluate
the wear leveling behavior of different swapping
schemes by stressing the swap area. We also measure
the time consumed by both the writer and reader.
The writer writes 128 GB data in total and the reader
repeats until all data are read out. We find that the
amount of data (128 GB) is large enough to make sure
all swap slots are used during our experiment.

3) Application relaunching delay: Application relaunch-
ing delay is an important performance metric for

TABLE 1
Workload Applications

Category Applications

Browser Google Chrome, Firefox, Opera, Dolphin
Browser, UC Browser

News BBC News, Flipboard, Google Newsstand,
Feedly, Yahoo News Digest

Multimedia KMPlayer, MX Player, Google Play Music, QQ
Music, Youtube

Social
networking

Facebook, Twitter, Google Plus, Instagram,
Pinterest

Gaming Hill Climb Racing, Temple Run, Boom Beach,
Angry Birds, Alto’s Adventure

Online
shopping

Amazon, TaoBao, eBay, Fancy, Google Play
Store

Mix1 Google Chrome, BBC News, Facebook, Alto’s
Adventure, Amazon

Mix2 Firefox, Yahoo News Digest, Instagram, Angry
Brid, TaoBao

4. Linux allows use a dedicated partition or file as the swap area.
Both methods use the same block interface and we use the file approach
for simplicity.
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smartphone users. Application relaunchingmay cause
inactive pages to be swapped to swap area and
requested pages to be loaded from swap area, espe-
cially when the system is under memory pressure, in
which situation application relaunching may trigger
lots of swap-ins and swap-outs. To see the perfor-
mance improvements of NVM-Swap over flash
backed swapping, we run all the applications shown
in Table 1 and compare the results between different
swapping schemes. To measure the application
relaunching delay, we use SwapBench [28] to perform
applications auto switching and results collecting.

4) Application execution time: Application execution time
is another important runtime performance metric.
We select one application from each application cate-
gory as the evaluation benchmark, and the execution
time is defined as the time consumed by an applica-
tion to complete a predefined operation. Table 2
shows the selected applications and their predefined
operations. To show the affects of different swapping
schemes on application execution time, we conduct
the evaluation when the memory is under pressure
and page swapping is already triggered.

The experimental results based on the above metrics are
discussed in Sections 4.3, 4.4, 4.5, and 4.6. Section 4.7 com-
pares the performance and cost of each swapping schemes
in terms of performance-cost ratio.

4.3 Number of Memory Copy Operations

Fig. 8 compares the number of memory copy operations
between Lazy Swap-in disabled and Lazy Swap-in enabled
with different swap size. As shown, Lazy Swap-in can
reduce around 10-30 percent memory copy operations,
which means the total number of swap-ins and swap-outs is
reduced. Particularly, Browser and Social networking
exhibit the highest memory copy reduction. In NVM-Swap,
pages that are swapped back from NVM swap area may
exhibit infrequent access pattern and consequently be

swapped to NVM again, which introduce extra memory
copy overhead since each swap-in/swap-out involves at
least one NVM/DRAM page read, one DRAM/NVM write,
and one PTE update. With Lazy Swap-in enabled, pages
can be read directly from the NVM swap area without actu-
ally swap in the requested pages, the overhead left is for the
PTE update, which only involves writing a 32/64-bit entry.

Besides, we observe that the average number of memory
copy operations decreases along with the increase of swap
size. This is mainly because that a larger swap area can store
more inactive pages swapped from DRAM, leading to the
DRAM have more free space to satisfy the memory requests
of current running applications. Pages have more chance to
reside in DRAM and page thrashing has less chance to hap-
pen. Therefore, the total number of memory copy opera-
tions (i.e., swap-ins and swap-outs) is reduced when the
capacity of the NVM swap area becomes larger.

4.4 NVMWear-Leveling

Fig. 9 demonstrates the write distribution of a traditional
DRAM-based swap area by running real applications on
Google Nexus 5 for a long period. The X-axis lists all the
swap slots (i.e., DRAM pages), and the Y-axis plots the num-
ber that the slot on the X-axis is written/used. As shown, in
DRAM-backed swapping, slots are not used evenly and
most writes are concentrated in a certain number of slots,
thus writes are not evenly distributed in the whole swap
area. The difference between the maximum and minimum
numbers of writes is as large as �2000. This is mainly
because that the slot selection algorithm is originally
designed for disk devices and does not aware the zombie
slots, which store pages that never or infrequently updated,
making the swap area exhibits unbalance write distribution.

Fig. 11 shows the samemetric of NVM-Swap using Heap-
Wear with different swap area sizes and thresholds. Com-
pared to DRAM-based swapping, NVM-Swap distributes

TABLE 2
Evaluation Applications and Operations of Execution Time

Application Operation

Google Chrome Launching and then loading a website
BBC News Launching and then opening an news
MX Player Openning a 1080P video
Facebook Launching and updating posts
Angry Birds Loading the game
Amazon Launching and loading product detials

Fig. 8. Comparison of number of memory copy operations between Lazy Swap-in disabled and Lazy Swap-in enabled.

Fig. 9. Write distribution of a 128 MB DRAM-based swap. Due to the lack
of NVM awareness, writes are concentrated to certain swap slots,
instead of being evenly distributed. Such an unbalanced write pattern
greatly reduces the lifetime of NVM with limited endurance.
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writes much more evenly across the whole swap area. The
threshold determines how frequent the slot exchange would
happen, which in turn determines the degree of wear level-
ing (i.e., how evenly the writes could distributed). A smaller
threshold will distribute writes in the whole swap area
more evenly, but require more slot exchanges operations.
As shown in Fig. 11, in general a larger threshold leads to

more variations (larger difference between the maximum
and minimum numbers of writes). In Fig. 10, we plot the
number of slot exchanges with different thresholds and
swap area sizes for NVM-Swap. As the threshold increases
on the X-axis, Heap-Wear performs fewer slot exchange
operations. The trend is observed for all NVM swap sizes.
However, with the same threshold, the NVM swap size does
not affect the number of slot exchanges drastically.

We compare the time consumed by swap in/out opera-
tions (the “writer” and “reader” experiments described in
the Section 4.2) in Fig. 12 with different swap sizes and
thresholds. In the figure, “regular write” represents swap-
ping out a page without slot exchange, while “wear leveling
write” means swapping out a page with slot exchange. “read
time” represents the time needed to swap in a page from the
swap area, and “average write time” denotes the average
time needed to swap out a page. Regular writes only need
one memory copy operation: copy the victim page from
DRAM to the swap area. In contrast, for wear levelingwrites,

Fig. 10. Number of slot exchanges in Heap-Wear with different swap
sizes and thresholds. In general, the larger the threshold, the fewer slot
exchanges.

Fig. 11. Write distribution of NVM-Swap with different swap area sizes and thresholds.
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one memory copy is needed in slot exchange, and another is
needed to copy the victim page from DRAM to the swap
area. Besides these twomemory copy operations, wear level-
ing writes also need to update the slot mapping table and the
PTEs for pagewasmapped in paging space.

In the figure, for each swap size and threshold combina-
tion, we observe the similar trend that the wear leveling write
time is roughly more than twice of a regular write, and the
average write time only increases slightly. The reason is that
slot exchanges only comprise a small part of the total swap-
outs. Table 3 reports the detailed results of time consumed by
writing data to NVM swap area. The “Time” column shows
the average time consumed by writing a page to NVM swap
area during regular writes and wear leveling writes, respec-
tively. As shown, slot exchanges only comprise a small part of
the total swap-outs. For instance, for a 128 MB NVM-based
swap area with a threshold of 256, slot exchanges only com-
prise less than 0.2 percent of total swap-outs. The “Number of
writes” column shows the total amount of writes during regu-
lar writes and wear leveling writes, respectively. The write
amounts for regular write are all similar (though slowly
increasing) given increasing thresholds. However, a larger
threshold significantly helps reduce the amount of writes and
access time forwear levelingwrites.

4.5 Application Relaunching Delay

When relaunching an application, if the application is still
cached in DRAM, the OS simply bring the application to
foreground and start running. Otherwise, the application
data has to be reload from secondary storage (i.e., flashmem-
ory if the application is killed and swap area if the applica-
tion data are swapped out), leading to a comparatively high
relaunching delay. During the relaunching experiments,

applications may be cached in DRAM, partially swapped
out or even killed. Therefore, to show how different swap-
ping schemes affect the application relaunching delay, we
collect the relaunching delay in each run and report the aver-
age average relaunching delay for each application. Fig. 13
compares the application relaunching delay between differ-
ent swapping schemeswith different swap size. As shown in
the figure, except for Facebook, which takes around 4 sec-
onds to relaunch (i.e., switch to foreground), the relaunching
delays of most applications are 2 seconds. In these three
swapping scheme, DRAM-backed swapping exhibits the
lowest relaunching delay while NAND flash-backed swap-
ping exhibits the highest relaunching delay.

In NAND flash-backed swapping (i.e., the baseline
scheme), writing/reading a page to/from swap area needs to
go through the whole storage stack, which is much slower
than writing/read a page to/from DRAM or NVM, making
NAND flash-backed swapping achieves the highest applica-
tion relaunchingdelay.NVM-Swap improves the relaunching
speed by replacing slow I/O operations with pure memory
copy operations. As shown in Fig. 13, compared to the base-
line scheme, the application relaunching speed of NVM-Swap
is around 12-46 percent faster. In particular, for Google
Chrome andOpera, the relaunching delays of NVM-Swap are
respectively 44 and 34 percent faster than that of baseline
scheme on average, which means a great improvement on
user experience. Therefore, we conclude that NVM-Swap can
improve the performance ofmobile devices.

As shown in Fig. 13, since DRAM is faster than NVM,
DRAM-backed swapping, which indeed is ramdisk based,
can reduce more relaunching delay than NVM-Swap when
compare them to the baseline scheme. However, in DRAM-
backed swapping, though it finally calls memcpy to swap

Fig. 12. Access delay of NVM swap area.

TABLE 3
The Results of Writing 128 GB Data to NVM Swap Area

Swap
size

Threshold Regular write Wear leveling write Average write
time (ms)Time (ms) Number of writes Time (ms) Number of writes % of Total

64MB 16 40.52 31,847,385 100.24 920,615 2.81 42.19
64 39.50 32,485,435 93.52 282,565 0.86 39.97
128 52.26 32,560,165 120.19 207,835 0.63 52.69
256 40.56 32,705,784 103.51 62,216 0.19 40.68

128MB 16 49.10 31,802,620 123.47 965,380 2.95 51.30
64 42.71 32,521,793 105.40 246,207 0.75 43.18
128 40.57 32,638,017 96.45 129,983 0.40 40.78
256 55.63 32,714,292 118.71 53,708 0.16 55.73

256MB 16 60.99 31,823,880 125.81 944,120 2.88 62.86
64 41.50 32,264,143 106.92 503,857 1.54 42.51
128 41.97 32,645,484 144.44 122,516 0.37 42.24
256 67.36 32,592,368 136.43 107,417 0.33 67.59
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in/out DRAM pages, it still needs to go through a “fake” I/O
path to move pages between DRAM and NVM. On the con-
trary, in NVM-Swap, swapping in and out are pure memory
copy operations and the number of memory copy operations
is further reduced with the help of Lazy Swap-in. Therefore,
due to the overheads brought by the “fake” I/O path, as
shown,DRAM-backed swapping only achieves slightly better
application relaunching delay than NVM-Swap. For some
applications, the relaunching delay of NVM-Swap and
DRAM-bakced swapping are almost the same, such as the
Fancy in Fig. 13c.

4.6 Application Execution Time

Fig. 14 compares the normalized application execution
time under different swapping schemes. Identical to our
application relaunching delay results, DRAM-backed
swapping achieves the shortest execution time while
NAND flash-backed swapping achieves the longest exe-
cution time. Compared to NAND flash-backed swapping,
application execution in NVM-Swap is around 14-45 per-
cent faster. In the context of runtime execution, faster
memory allocation can definitely shorten the execution
time. Since the evaluation is conducted when the memory
is under pressure, page swapping will be triggered by
memory allocation, and thus make page swapping an

important factor in application execution time. Therefore,
NAND flash-backed swapping always exhibits the lon-
gest execution time.

Compared to DRAM-backed swapping, application exe-
cution in NVM-Swap is slightly slower. As we analyzed in
Section 4.5, although DRAM is faster than NVM in both
read and write, the software infrastructure of ramdisk

slows down the page swapping. Therefore, DRAM-backed
swapping only outperforms NVM-Swap by around 4 per-
cent. We believe that with faster NVM, NVN-Swap can
achieve higher performance.

4.7 Performance and Cost Analysis

DRAM-backed swapping achieves the best performance
with high energy consumption, while NAND flash-backed
swapping achieves worst performance with low energy con-
sumption. To showwhich swapping scheme is more suitable
for mobile devices, we compare the performance per dollar
(performance-cost ratio) [30] of each swapping scheme. To
evaluate the application performance under different swap-
ping schemes, we use the sum of average application
relaunching speedup and average execution speedup over
NAND flash-backed swapping as the performance metric.
Therefore, the performance of NVM-Swap and DRAM-
backed swapping can be respectively expressed as

Fig. 13. Application relaunching delay under different swapping schemes with different swap size. The baseline is the relaunching delay of applica-
tions under NAND flash-backed swapping.

Fig. 14. Comparison of application execution time under different swapping schemes with different swap size.
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where T launch
NANDðiÞ, T launch

NVM ðiÞ and T launch
DRAMðiÞ denote the applica-

tion relaunching time of ith application in NAND flash-
backed swapping, NVM-Swap and DRAM-backed swap-
ping. Texec

NANDðiÞ, Texec
NVMðiÞ and Texec

DRAMðiÞ denote the applica-
tion execution time of ith application.

For fair comparison, we define the cost of different swap-
ping schemes as the sum of energy consumption cost during
the lifetimeofmobile devices and the swapdevice cost. Table 4
shows the detailed energy parameters. Note that the prices of
DRAM and flash are obtained from Amazon.com, and the
swap-ins and swap-outs are estimated based on the number
of memory copy operations shown in Section 4.3, the actual
numbers may vary with user behavior and swap size. There-
fore, the total cost of swapping can be expressed as

Cost ¼ ðErd �Nrd þEwr �Nwr þ Pstby þ PrefÞ � T � CE

þ Cprice � Sizeswap area; (3)

where T denotes the endurance of mobile devices.
Fig. 15 shows the normalized performance-cost ratio.

Compared to DRAM, although NVM has higher price, it
exhibits much lower standby power and zero refresh power,
making NVM-Swap outperforms DRAM-backed swapping
by around 22 percent. Because of the high idle power (i.e.,
standby and refresh power) of DRAM, the energy-efficiency
of DRAM-backed swapping is much lower than that of both
NVM-Swap and NAND flash-backed swapping. Thus,
DRAM-backed swapping exhibits the lowest performance-
cost ratio. Due to the low price, NAND-flash backed swap-
ping achieves the highest performance-cost ratio. However,
the poor read/write performance of NAND flash slows
down the application relaunching and execution, makes that
the flash-backed swapping is always disabled in mainstream
smartphones. Therefore, we argue that NVM-Swap is a bet-
ter swapping solution formobile devices.

5 RELATED WORK

There are various of previous work related to NVM-Swap.
Most of the related work lies in the following three areas:
flash based swapping system, NVM wear-leveling and
hybrid NVM/PCM main memory. In this section, we dis-
cuss these related work separately.

Flash Based Swapping System. There are several newly pro-
posed flash based swapping systems. MARS [31] is flash-
aware page swapping system and aims to speed-up the
application relaunching. Jung et al. design and implement
FASS [32], which is a raw flash memory based swapping
system without using a flash translation layer. FlashVM [18]
is another flash backed swapping, which integrates flash
memory with virtual memory and provides better garbage
collection by batching writes. SSDAlloc [33] is an SSD/
DRAM hybrid system which extends DRAM with SSD and
allows programmers to treat SSD as DRAM. Recently, Kim
et al. [20] evaluate the impact of sub-optimal NAND flash
based storage in smartphones and report that storage plays
a significant role in application performance. To eliminate
the performance gap between main memory and flash
based swap area, we replace flash memory with emerging
byte-addressable NVM and adopt it as swap area, swap in/
out is through memory interface.

NVM Wear-Leveling. Most NVMs have limted enduracne
and are vulnerable to unbalance writes. To address this prob-
lem, Chen et al. [6] introduce an age-based wear-leveling
scheme with near-zero searching cost. Start-Gap [12] and seg-
ment swapping [9] are two representative wear-leveling algo-
rithm which aim evenly distribute writes among all PCM
cells. Qureshi et al. [34] propose a set of techniques such as
lazy write and line level writeback to reduce writes. [35] and
[36] aim to prolong the lifetime of PCM-based main memory
in embedded systems. Zhang et al. [37] enhance the lifetime of
PRAM while considering the process variations. Jiang
et al. [38] propose LLS, which is a line-level mapping and sal-
vaging scheme that integrates state-of-art wear leveling tech-
niques. Ferreira et al. [39] increase PCM lifetime by swapping
pages on page cache writebacks. Different from these
approaches, which target at the wear-leveling of main mem-
ory, Heap-Wear uses counters to trace age information of
NVM pages and provides page-level wear-leveling with low
overhead for NVMswap area.

Hybrid NVM/DRAM Main Memory. Due to their low
standby power, high density and byte addressability,
NVMs, such as PCM, are considered as promising DRAM
alternatives [9], [40]. In [41], [42], a hybrid PCM/DRAM
main memory system is proposed where pages can be trans-
ferred between PCM and DRAM for saving energy and
improving PCM lifetime. Qureshi et al. [34] propose a
hybrid main memory organization with on-chip DRAM
cache and PCM main memory, in which DRAM is not

TABLE 4
Energy and Price Parameters

DRAM PCM Flash

Read (Erd) 4:7� 10�8J/4KB 1:7� 10�8J/4KB 2:6� 10�5J=4KB
Write (Ewr) 4:7� 10�8J/4KB 2:1� 10�7J/4KB 2:9� 10�5J/4KB
Standby (Pstby) 5.3mW/GB 2.5mW/GB 1.2mW/GB

Refresh (Pref ) 12.4mW/GB 0 0

Price (Cprice) �7$/GB 8$/GB [29] �0.6$/GB

Swap-outs(Nwr) �20000 per 15 min, thus �22.22 pages/sec
Swap-ins (Nrd) �10000 per 15 min, thus �11.11 pages/sec
Electricity

price (CE)

�0.12$/KW

The energy parameters are obtained using the power model in [14].

Fig. 15. Comparison of normalized performance-cost ratio (perfor-
mance/$) between different swapping schemes.
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visible to OS and managed by the dedicated memory con-
troller. Different from the architecture proposed in [34], in
our architecture, DRAM is served as the main memory and
NVM is used as the swap area, and both DRAM and NVM
are visible to OS. nCode [43] is similar to our approach but
it aims to reduce the write to NVM by storing code pages in
NVM. Though we have the same or similar hardware archi-
tecture compared to these hybrid memories, the software or
the management strategy is totally different. In the hybrid
approaches, NVM is treated as main memory and the space
is managed by the OS memory management component for
allocation and deallocation. In our architecture, we adopt
NVM as the swap area and the space is managed by the
swap subsystem, which in charge of allocation swap space
to store inactive pages swapped out from DRAM.

6 CONCLUSION

In this paper,we have revisited swapping in smartphones and
proposed NVM-Swap to build high-performance smart-
phones. We replace part of the DRAM with NVM, and use it
as a swap area. Compared to flash-based swap solutions in
smartphones, NVM-Swap maintains good user experience
(much fewer process terminations) without degrading perfor-
mance. To reduce the memory copy operations, we proposed
Lazy Swap-in, which gives pages a second chance to stay in
NVM swap area and supports read pages in NVM directly
without copying it back toDRAM. To overcome the drawback
that most NVMs have limited write endurance, we designed
Heap-Wear, a space-efficient wear-leveling algorithm for
NVM-Swap. Experimental results show that Lazy Swap-in
can reduce the memory copy operations by around 10-30 per-
cent.Heap-Wear can evenly distributewrites across thewhole
NVM swap area, greatly improving the lifetime of NVM.
Finally, application relaunching delay and application execu-
tion time are respectively reduced by around 12-46 percent
and 14-45 percent when compared to NAND flash-backed
swapping. Moreover, NVM-Swap does not target at any spe-
cific NVM products as they are still in constant change, our
system is kept general enough for quick adoption whenNVM
hardware becomes available.
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