
DR. Swap: Energy-Efficient Paging for Smartphones

Kan Zhong Xiao Zhu Tianzheng Wang† Dan Zhang
Xianlu Luo Duo Liu∗ Weichen Liu Edwin H.-M. Sha
College of Computer Science, Chongqing University, liuduo@cqu.edu.cn

Key Lab. of Dependable Service Computing in Cyber Physical Society (Chongqing Univ.), Ministry of Education
†Department of Computer Science, University of Toronto, tzwang@cs.toronto.edu

ABSTRACT
Smartphones are becoming increasingly energy-hungry to
support feature-rich applications, posing a lot of pressure
on battery lifetime and making energy consumption a non-
negligible issue. In particular, DRAM is among the most
demanding components in energy consumption. In this pa-
per, we propose DR. Swap, an energy-efficient paging design
to reduce energy consumption in smartphones. We adopt
emerging energy-efficient non-volatile memory (NVM) and
use it as the swap area. Utilizing NVM’s byte-addressability,
we propose direct read which guarantees zero-copy for read-
only pages in the swap area. Experimental results based on
the Google Nexus 5 smartphone show that our technique
can effectively reduce energy consumption.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—Main
memory, storage hierarchies

Keywords
Swapping; paging; energy; non-volatile memory; smartphone

1. INTRODUCTION
Thanks to the advances in mobile microprocessors and

operating systems, smartphones nowadays integrate more
functionality than they ever had, such as the ability to install
third-party applications, multi-tasking and gaming. These
functionalities, on the one hand bring great user experiences;
on the other hand they accelerate the depletion of the limited
energy that could be carried by a smartphone in the form
of batteries with a capacity of around 1000–2000mAh. Such
resource-constrained nature of smartphones in turn affects
user experience. For example, in most smartphone OSes,
applications are not terminated (thus resources not released)
when they are switched to backend to allow faster switch-
back. Various daemons also keep running all the time to pull

∗Duo Liu is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISLPED’14, August 11–13, 2014, La Jolla, CA, USA.
Copyright 2014 ACM 978-1-4503-2975-0/14/08 ...$15.00.
http://dx.doi.org/10.1145/2627369.2627647.

Table 1: Comparing PCM, DRAM and NAND flash [5, 21].

Attributes DRAM PCM NAND

Non-volatility No Yes Yes
Idle power ∼100mW/GB ∼1mW/GB ∼10mW/GB
Bandwidth ∼GB/s 50-100MB/s 5-40MB/s

Write latency 20-50ns ∼1us ∼500us
Erase cycles ∞ 106 − 107 104 − 105

useful information for the user (e.g., notifications for new
instant messages). As a result, a lot of energy is consumed
by the DRAM-based main memory to maintain these run-
time data, leading to high energy consumption.

What makes the situation worse is the trend of adopt-
ing large main memories to support feature-rich applica-
tions. For example, Google Nexus 5 has as much as 2GB
main memory.1 Larger main memory improves system per-
formance, but inevitably leads to higher energy consump-
tion [4, 18]. It is reported that smartphone’s main memory
can consume more than 30% of the overall energy [4]. Re-
ducing the energy consumption of main memory becomes
critical in smartphones. Most existing work [8, 13] suggests
turning off inactive DRAM banks or reducing memory us-
age. However, these approaches may degrade performance
as they essentially reduce usable system memory.

We argue that smartphones should re-adopt swapping with
the help of emerging byte-addressable, non-volatile memory
(NVM). Swapping is an effective way of extending memo-
ry using storage spaces [17]. It has long been a standard
feature in modern OSes, but smartphones seldom use it be-
cause of the sub-optimal storage (NAND flash) performance.
Though flash memory has much better energy consump-
tion parameters than DRAM, it could not be used as the
swap area while maintaining acceptable performance. Com-
pared to flash, byte-addressable NVMs such as phase change
memory (PCM) [26] and memristor [23] offer not only faster
(near-DRAM) performance, but also lower energy consump-
tion. As shown in Table 1, PCM exhibits much better ener-
gy parameters when compared to both DRAM and NAND
flash. It also exhibits much shorter write latency when com-
pared to NAND flash [27]. A plethora amount of work have
been proposed to further achieve near-DRAM performance
and better endurance for PCM [2, 7, 9, 12, 16, 19, 28]. Oth-
er NVMs such as STT-RAM [6] could promise even faster
performance and better endurance than DRAM [10]. Thus,
we do not specifically consider endurance or latency issues

1http://www.google.com/nexus/5

Figure 1: Traditional NAND flash backed swapping.

and focus on energy consumption in this paper. Unlike flash,
these NVMs are byte-addressable and can be placed on the
memory bus, available to load and store instructions. Such
combination of high performance and low energy consump-
tion makes NVM an ideal candidate for swapping.
In this paper, we propose an in-memory paging architec-

ture called DR. Swap, to re-adopt swapping in smartphones
by replacing part of the DRAM with NVM, and using NVM
as a swap area. With less DRAM, we reduce energy con-
sumption, while the NVM based swap area extends memory
capacity to still allow feature-rich applications to run. In
addition, utilizing the NVM’s byte-addressability, we allow
direct read (DR) for read requests directly from the swap
area, guaranteeing zero-copy for read-only pages. With DR,
read requests are satisfied by mapping the virtual address to
the physical page in the NVM-based swap area, instead of by
copying the memory page from the swap area to user space.
DR is made possible because of the byte-addressability of
NVM. In DR. Swap, the NVM-based swap area is attached
to the memory bus, eliminating I/O and the whole storage
stack overhead. With the traditional swap approach which
has to go through the whole storage stack to access a page,
we avoid unnecessary memory copying to DRAM, thus re-
ducing energy consumption.
In summary, we make the following contributions:

• We explore the feasibility of re-adopting swapping for
better energy consumption behaviors in smartphones;

• Based on byte-addressable NVMs, we propose an in-
memory paging architecture to reduce energy consump-
tion while maintaining high performance;

• We propose direct read (DR) to further avoid unnec-
essary memory copying induced by read-only requests,
thus reducing energy consumption.

In Section 2 we first give related backgrounds. Section 3
details the design of DR. Swap. Evaluation results are shown
in Section 4. We summarize related work and conclude in
Sections 5 and 6, respectively.

2. BACKGROUND
We give background on swapping and energy-related is-

sues in smartphones. We use Google Android as an example
as it is the most widely adopted smartphone OS. Note that
this work can also be extended to support other platforms.

Figure 2: The number of processes killed with and
without a swap area under different DRAM sizes.

2.1 Swapping and Paging in Smartphones
Swapping is an effective way to extend memory space

by borrowing space backed by storage devices (e.g., NAND
flash) in modern OSes [17]. With paging, swapping becomes
more flexible as processes could be swapped in and out in
units of non-contiguous pages. However, usually swapping
is not enabled by smartphones due to the sub-optimal stor-
age (NAND flash) performance [11]. As shown in Figure 1,
a traditional swap area is backed by storage, such as flash
memory. The swap area is divided into slots, each of which
is precisely the size of a page. As shown in Figure 1, when
memory is under pressure, the kernel will start to swap i-
nactive pages out to the I/O device via the block layer to
make room for incoming memory allocations.

To avoid poor performance, mainstream mobile OSes such
Android disables swapping and implements a low memory
killer (LMK) to reclaim memory by terminating certain pro-
cesses when the system is under pressure. Despite the poor
performance, we find that a swap area can significantly re-
duce the number of killed processes and improve user ex-
perience should we have high performance storage. We plot
the number of killed processes by LMK (y-axis) with varying
memory capacity (x-axis) in Figure 2. With a flash backed
swap area, the number of killed processes could be signifi-
cantly reduced (e.g., from 447 to 150 with 1G memory). Fig-
ure 3 highlights the amount of block I/O induced by a flash
backed swap. Swapping greatly increases I/O operations.
Recent research has shown that storage plays a significan-
t role in application performance [11]. In particular, when
pages are swapped out from main memory to the on-board
eMMC flash, a significant portion of bandwidth is occupied,
leading to sub-optimal overall performance. Moreover, the
erase count of eMMC flash is limited to 105 [3]; frequent-
ly writing to the swap area further reduces the lifetime of
NAND flash.

2.2 Energy Consumption in Smartphones
Due to size, weight and heat dissipation constraints, s-

martphones nowadays usually can only be equipped with
batteries of very limited capacity (e.g., 1000–2000mAh). This
implies that energy becomes a first-class citizen in smart-
phones. In particular, the energy consumed by DRAM is
non-negligible [1]. DRAM could account for as much as
34.5% of the overall energy consumption of a smartphone [20].
What makes the situation worse is the trend of adopting
large main memories to support feature-rich applications.
For example, the Google Nexus 5 smartphone has as much
as 2 GB memory. In most smartphone OSes, applications
are not fully closed (thus resources not released) when they

Figure 3: Comparison I/O between eMMC swap
and native Android OS with swap disabled.

are switched to backend to allow faster switch-back. Var-
ious daemons also keep running all the time to pull useful
information for the user (e.g., notifications for new instan-
t messages). As a result, excessive energy is consumed by
the DRAM-based main memory to maintain these run-time
data, leading to high energy consumption.

3. ENERGY-EFFICIENT PAGING
We first give details on DR. Swap, which consists of our

energy-efficient in-memory paging (IMP) architecture and
the direct read optimization. In the end, we discuss IMP’s
energy efficiency.

3.1 In-Memory Paging Architecture
Utilizing NVM’s energy-efficiency and byte-addressability,

DR. Swap consists of an in-memory paging architecture and
the direct read (DR) optimization. Our in-memory pag-
ing architecture attaches NVM to the memory bus, side
by side with DRAM to make it directly accessible by the
load and store instructions. Different from hybrid memory
approaches which treat NVM as part of main memory, we
dedicate the NVM region as the swap area, which is usually
backed by some I/O device (e.g., NAND flash) in existing
systems. Compared to hybrid memories, swapping effective-
ly re-uses the infrastructure that is already existed in mo-
bile OSes and much less intrusive to implement. With IMP,
swapping requests become pure memory copying, instead of
I/O requests, thus eliminating the need to go through all the
storage stack to access data in the swap area, and allowing
better utilization of NVM’s high performance.
Since we attach NVM to the memory bus, the OS sees

an NVM area that shares part of the physical address space
with DRAM. We focus on the software side in this paper,
but expect the memory controller to provide information on
which part of the whole address space belongs to NVM (e.g.,
through the E820 table in the x86 architecture). The OS can
then manage the NVM area by reading such information at
boot time. We still use DRAM as main memory and eMMC
flash as secondary storage for system and user data. On
top of the OS kernel, all system libraries and user space
applications work as usual.
Figure 4 shows the details of adopting IMP in existing OS-

es. When the system is under pressure (i.e., no enough mem-
ory for satisfying allocation requests), the memory manage-
ment subsystem will try to reclaim page frames from running
applications and swap them out to the swap area. We re-
place the traditional swap subsystem with our NVM-based
swap subsystem, which accesses NVM directly without going

Figure 4: In-memory paging architecture. We re-
place the traditional storage-based swap area with
memory-attached NVM. The memory managemen-
t subsystem interacts with memory, instead of I/O
devices (e.g., flash) to swap in/out pages.

Figure 5: Overview of direct read. DR directly maps
the NVM page to the user space from the swap area,
saving extra memory copying for page reads.

through the storage stack. Victim pages selected by the ker-
nel’s page frame reclaim routine are directly written to the
swap area through simple memcpy calls. Compared to NAND
flash, though NVM could have similar read/write power, it
exhibits lower idle power and much faster read/write speed
than NAND flash. Compare to the traditional I/O based
swap architecture shown in Figure 1, IMP achieves both
high performance and energy efficiency.

3.2 Direct Read
In a traditional paging system based on I/O devices (e.g.,

NAND flash), victim memory pages will be copied first to
the swap area and then copied back to main memory (i.e.,
DRAM) when the page is requested again from the user s-
pace. The kernel handles such requests through the page
fault handler, which reads the I/O device to fetch the re-
quested page, set up new page table mappings and return
to the user application. The whole operation will involve
at least one I/O device read, one DRAM page write and
one page table entry (PTE) write. It fits nicely with it-
s target architecture. In the IMP architecture, the whole
operation now will involve one memory read, one memory
write and one PTE write. However, this approach incurs
unnecessary memory copying, especially for page reads, s-
ince the requested memory page already resides in memory
– the NVM – though in a different region.

To remove unnecessary memory operations between NVM
and DRAM, as shown in Figure 5, DR directly sets up the
PTE mappings from the user space virtual address to the
physical address of the NVM page in the swap area, instead
of first reading and then copying the page from NVM to

DRAM. In this way, we remove the need of both reading
and writing of NVM and DRAM, respectively. Compared
to the traditional approach, we save the energy for reading
and writing a whole page. The only overhead left is for the
PTE write, which only involves writing a 32-bit entry.
DR naturally utilizes the fast read performance of most

NVM technologies. We do not allow “direct write” for write
requests, due to the asymmetric nature of most NVM’s la-
tency (e.g., PCM has much faster reads than writes), wear
leveling concerns, and the complication brought by intrusive
changes to support writes.

3.3 Energy Model
We analyze the energy efficiency of different paging archi-

tectures with the following model. Table 2 lists the power
consumption mnemonics and values of read, write, idle and
refresh operations for DRAM, NVM, and NAND flash. En-
ergy parameters used in our model are shown in Table 3. We
compare the energy consumed by DR. Swap, NAND flash
backed swap and ramdisk (DRAM-backed) swap. By com-
paring the energy consumption of DR. Swap with ramdisk

swap, we show how much energy is saved by our IMP archi-
tecture and the DR optimization.
Note that idle power is not included in our model for sim-

plicity. The idle power of different memory technologies have
obvious larger-than relationships, and will only add a con-
stant to each pair of comparison result. Thus, the omission
will not affect the accuracy of our model when comparing
different architectures.
DR. Swap. Swapping pages out involves copying them

from DRAM to NVM and then setting up PTEs to indicate
that these pages are not present in memory (see details in
Section 2). Thus, the energy consumed by W swap-outs is:

EWN = W×S×(PRD+PWN)+W×P×(PRD+PWD) (1)

For each page read, no memory copy is required with DR.
The only overheads are one NVM read for the processor
to access the page in NVM, the PTE write to setup new
memory mapping and one DRAM read to read the mapping
by the MMU. The energy consumed by R swap-ins is:

ERN = R× S × PRN +R× P × (PWD + PRD) (2)

NAND flash backed swap. Swap-out is similar to DR.
Swap, except that accessing NAND flash is slower:

EWF = W×S×(PRD+PWF)+W×P×(PRD+PWD) (3)

Direct read cannot be applied in this case, thus the energy
consumed by R swap-ins is:

ERF = R×S× (PRF +PWD)+R×P × (PWD +PRD) (4)

DRAM backed swap. The only difference with NAND
flash backed swap is the latency values. For swap-outs:

EWD = W×S×(PRD+PWD)+W×P×(PRD+PWD) (5)

Swap-in is similar, with DRAM’s latency:

ERD = R×S× (PRD +PWD)+R×P × (PWD +PRD) (6)

Comparison. Based on Equations (2) and (4), the dif-
ference on swap-ins with DR. Swap and NAND flash is:

D = R× S × (PRF + PWD − PRN) (7)

Similarly, we can derive the difference between DR. Swap
and DRAM swap by replacing PRF in Equation (7) with

Table 2: Power consumption mnemonics and values for
DRAM, NVM and NAND flash in our energy model. Values
are shown in the corresponding parentheses.

Read
(nJ/Byte)

Write
(nJ/Byte)

Idle
(mW/GB)

Refresh
(mW/GB)

DRAM PRD (0.8) PWD (0.8) PID (100) PFD (1.35)
NVM PRN (0.8) PWN (8) PIN (1) PFN (0)
eMMC PRF (1) PWF (1.3) PIF (10) PFF (0)

Table 3: Energy model parameters.

Parameter Explanation

R Number of swap-ins
W Number of swap-outs
S Page size, default 4KB
P PTE length, default 4 bytes

PRD. As we expect that PRN is smaller than both PRF

and PRD. When taking idle power and refresh power(for
DRAM) into consideration, we conclude that DR. Swap is
capable of reducing energy consumption when compared to
existing swap architectures. In Section 4 we verify these
projections by running various smartphone applications.

4. EVALUATION
We implement and evaluate DR. Swap based on Google

Nexus 5 with Android 4.4 (Linux kernel version 3.4). The
Nexus 5 smartphone features a Qualcomm Snapdragon 8974
processor clocked at 2.3GHz, 2GB DRAM and 16GB eMM-
C NAND flash. We focus on energy issues in this paper,
though it is obvious that a fast NVM-based swap area will
definitely improve performance. We left performance eval-
uation as future work. The rest of this section first gives
our experimental setup. We then present and discuss the
results.

4.1 Experimental Setup
We use the Android Debug Bridge (ADB) provided by

the Android SDK to communicate with the Nexus 5 smart-
phone which is connected to a desktop PC. To understand
the effect of eMMC flash backed swap, we use blktrace to
collect block layer I/O activities. Before each test, we re-
boot the phone and set aside for few minutes to ensure the
device is roughly in the same state (e.g. number of back-
ground process). For all the experiments, we connect the
phone to a charger and make sure the phone is working in
its full performance capability.

We use PCM as the NVM in our experiments. Note that
we do not specifically emulate the latency values of PCM,
though it is slower than DRAM. As we mentioned in Section
1, a lot of work on improving the endurance and performance
of PCM has been proposed. In our future work, we will study
how to improve the endurance for NVM backed swap area.
Moreover, our system does not rely on any specific type of
NVM and can be easily adopted by different NVM-based
systems. In our work, we do not focus on which NVM can
be served as the swap area, and instead, we focus on the how
to design and implement the NVM backed swap area. The
energy consumption values for DRAM, PCM, and eMMC
flash is shown in Table 2. Table 4 lists the applications we
used in the experiments. We classify them into seven cate-
gories, including browser, social network, multimedia, office,

Table 4: Workload applications.

Category Application

Internet Android Browser, Firefox Browser for
Android, Google Chrome, Opera

Social
networking

Facebook, Google+, Pinterest, QQ, Sina
Weibo, Skype, Twitter, WhatsApp

Multimedia Google Play Music, MX Player, TTpod
Player, Youtube

Office Evernote, Gmail, Google Drive, Google
Maps, Office Mobile

Gaming Angry Brid, Asphalt 8 , Temple Run 2
Shopping Amazon, Ebay, Fancy, Google Play,

TaoBao
News BBC News, Engadget, Flipboard,

Google Newsstand, NBC News, NetEase
News, Netflix, TED, Zaker

games, shopping and news. Those categories have covered
the applications we daily used and the application we choice
are worldwide popularity. Therefore we use those applica-
tions to evaluate our work. By running these applications,
we collect data for the following metrics:
Memory copy reduction. To evaluate the effectiveness

of direct read, we run all the applications in each catego-
ry for 15 minutes shown in Table 4 and count the number
of reduced memory copy. Accessing a non-present page in
DRAM could cause a page fault, we modified the page fault
handler to support read a swapped out page in NVM swap
area directly. A read counter is used to counts the number of
reduced memory copy and a write counter is used to counts
the actually swap-ins.
Energy consumption. To evaluate the energy consump-

tion of DR.Swap, we run all the applications in each category
to compare the energy consumption under different swap im-
plementations including DRAM backed, eMMC flash backed
and DR.Swap. The energy consumption by each swap imple-
mentations is computed using the model proposed in section
3 according to the swap-ins and swap-ous.

4.2 Results
Figure 6 compares the number of direct reads and the

“real” swap-ins. With an eMMC flash backed swap architec-
ture, the total number of swap-ins can be count as the sum
of DR. Swap’s direct reads and DR. Swap’s “real” swap-ins.
With DR. Swap, we reduce the number of required memory
copy by around 50% for browsers, office and gaming appli-
cations. Moreover, for other applications such as shopping,
DR. Swap reduces more than 70% “real” swap-ins.
Figure 7 shows that DR. Swap consumes much less ener-

gy when compared to eMMC flash backed swap and DRAM
backed swap architectures. The paging architecture we pro-
posed is energy efficient. The energy consumption is com-
puted under the energy model proposed in Section 3. The
total energy consists of three parts: swap-in/swap-out en-
ergy, idle energy and refresh energy. For eMMC flash swap
and DR. Swap, the refresh energy is zero as neither PCM
nor eMMC flash requires constant voltage to maintain its
data. Because of the limited swap-ins and swap-outs during
the 15 minutes, the energy is dominated by the idle energy
and refresh energy. Therefore, our results in Figure 7 could
hardly show the difference among different categories of ap-

Figure 6: The number of direct reads in 30 minutes.

Figure 7: Comparing energy consumption between
DR. Swap, eMMC swap and DRAM swap.

plications when using DRAM backed swap. However, we
observe uniformly much lower energy consumption for DR.
Swap compared to eMMC flash backed swap. Though eMM-
C flash backed swap also reduces a considerable amount of
energy consumption, it greatly degrades performance due to
the sub-optimal I/O design. Therefore, we conclude that an
in-memory paging architecture with the help of emerging
byte-addressable NVM is the ultimate solution for effective
and efficient swapping for smartphones.

5. RELATED WORK
Reducing energy consumption in smartphones has been

a focus in the research community. Wang et al. [24] uses
profile-based battery traces to estimate the power consump-
tion of mobile applications. To better understand energy
consumption in smartphones, Perrucci et al. [18] measured
and compared the energy consumed by different components
in mobile devices. Shen et al. [22] proposed an energy-
efficient caching and prefetching by considering the char-
acteristics of mobile systems such as data update and user
request patterns. Lee et al. [14] focused on the optimization
of the power delivery network(PDN) in smartphones.

Due to its low standby power, high density and byte ad-
dressability, PCM is considered as a promising DRAM alter-
native [12, 21]. To improve PCM’s performance and lifetime,
various techniques and systems have been proposed [2, 7, 9,
12, 16, 19, 25, 28]. Hybrid approaches are also used, such
as hybrid cache [15] and using mobile RAM and NVM to-
gether [4]. Though we do not target at any specific NVM
products, we expect them to be energy-efficient, fast, and
cheap as predicted. Our system could be easily ported to
work with different future NVM technologies.

6. CONCLUSIONS
Reducing energy consumed by DRAM is critical for saving

battery lifetime in smartphones. Emerging NVM’s energy-
efficiency and byte-addressability make it attractive for swap-
ping in smartphones. In this paper, we have proposed DR.
Swap, an energy-efficient in-memory paging (IMP) archi-
tecture to reduce energy consumption in smartphones. We
re-adopt swapping in smartphones by replacing part of the
DRAM with NVM, and using it as a swap area. We al-
so propose direct read which guarantees zero-copy for read-
only pages in the swap area. Experimental results based on
Google Nexus 5 show that on average DR. Swap can reduce
more than 60–80% energy consumption when compared to
flash and DRAM based swap architectures, respectively.

ACKNOWLEDGEMENTS
This work is partially supported by the National Natural Sci-
ence Foundation of China (61309004), National 863 Program
(2013AA013202), Research Fund for the Doctoral Program
of Higher Education of China (20130191120030), Chongqing
cstc2012ggC40005 and cstc2013jcyjA40025, Fundamental Re-
search Funds for the Central Universities (CDJZR14185501).

REFERENCES
[1] A. Carroll and G. Heiser. An analysis of power

consumption in a smartphone. USENIX ATC, 2010.

[2] S. Cho and H. Lee. Flip-N-Write: A simple
deterministic technique to improve PRAM write
performance, energy and endurance. MICRO, pages
347–357, 2009.

[3] J. Cooke. Flash memory technology direction. Micron
Applications Engineering Document, 2007.

[4] R. Duan, M. Bi, and C. Gniady. Exploring memory
energy optimizations in smartphones. IGCC, pages
1–8, 2011.

[5] S. Eilert, M. Leinwander, and G. Crisenza. Phase
change memory: A new memory enables new memory
usage models. IMW, pages 1–2, 2009.

[6] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho,
Y. Higo, K. Yamane, H. Yamada, M. Shoji,
H. Hachino, C. Fukumoto, H. Nagao, and H. Kano. A
novel nonvolatile memory with spin torque transfer
magnetization switching: spin-ram. IEDM, pages
459–462, 2005.

[7] J. Hu, C. J. Xue, Q. Zhuge, W.-C. Tseng, and
E. H.-M. Sha. Write activity reduction on non-volatile
main memories for embedded chip multiprocessors.
ACM TECS, pages 77:1–77:27, 2013.

[8] H. Huang, P. Pillai, and K. G. Shin. Design and
implementation of power-aware virtual memory.
ATEC, 2003.

[9] L. Jiang, B. Zhao, Y. Zhang, J. Yang, and B. Childers.
Improving write operations in MLC phase change
memory. HPCA, pages 1–10, 2012.

[10] A. Jog, A. Mishra, C. Xu, Y. Xie, V. Narayanan,
R. Iyer, and C. Das. Cache revive: Architecting
volatile STT-RAM caches for enhanced performance
in CMPs. DAC, pages 243–252, 2012.

[11] H. Kim, N. Agrawal, and C. Ungureanu. Revisiting
storage for smartphones. FAST, 2012.

[12] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger.
Architecting phase change memory as a scalable
DRAM alternative. ISCA, pages 2–13, 2009.

[13] M. Lee, E. Seo, J. Lee, and J.-S. Kim. PABC:
Power-aware buffer cache management for low power
consumption. IEEE TC, 56(4):488–501, 2007.

[14] W. Lee, Y. Wang, D. Shin, N. Chang, and M. Pedram.
Optimizing the power delivery network in a
smartphone platform. IEEE TCAD, pages 36–49,
2014.

[15] J. Li, L. Shi, C. Xue, C. Yang, and Y. Xu. Exploiting
set-level write non-uniformity for energy-efficient
nvm-based hybrid cache. ESTIMedia, pages 19–28,
2011.

[16] D. Liu, T. Wang, Y. Wang, Z. Qin, and Z. Shao.
PCM-FTL: A write-activity-aware NAND flash
memory management scheme for PCM-based
embedded systems. RTSS, pages 357–366, 2011.

[17] J. Park, H. Han, and S. Cho. Extending main memory
with flash – the optimized SWAP approach. NVMW,
2014.

[18] G. P. Perrucci, F. H. P. Fitzek, and J. Widmer.
Survey on energy consumption entities on the
smartphone platform. VTC, pages 1–6, 2011.

[19] M. K. Qureshi, J. Karidis, M. Franceschini,
V. Srinivasan, L. Lastras, and B. Abali. Enhancing
lifetime and security of PCM-based main memory with
Start-gap wear leveling. MICRO, pages 14–23, 2009.

[20] A. Rice and S. Hay. Decomposing power measurements
for mobile devices. PerCom, pages 70–78, 2010.

[21] Z. Shao, Y. Liu, Y. Chen, and T. Li. Utilizing PCM
for energy optimization in embedded systems. ISVLSI,
pages 398–403, 2012.

[22] H. Shen, M. Kumar, S. K. Das, and Z. Wang.
Energy-efficient data caching and prefetching for
mobile devices based on utility. Mob. Netw. Appl.
2005, 10(4):475–486.

[23] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S.
Williams. The missing memristor found. Nature, 2008.

[24] C. Wang, F. Yan, Y. Guo, and X. Chen. Power
estimation for mobile applications with profile-driven
battery traces. ISLPED, pages 120–125, 2013.

[25] J. Wang, X. Dong, Y. Xie, and N. Jouppi. i2WAP:
Improving non-volatile cache lifetime by reducing
inter- and intra-set write variations. HPCA, pages
234–245, 2013.

[26] H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P.
Reifenberg, B. Rajendran, M. Asheghi, and K. E.
Goodson. Phase change memory. Proceedings of the
IEEE, 98(12):2201–2227, 2010.

[27] C. Xue, G. Sun, Y. Zhang, J. J. Yang, Y. Chen, and
H. Li. Emerging non-volatile memories: Opportunities
and challenges. CODES+ISSS, pages 325–334, 2011.

[28] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable
and energy efficient main memory using phase change
memory technology. ISCA, pages 14–23, 2009.

