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Abstract—Recent years have seen an exploration of data
volumes from a myriad of IoT devices, such as various
sensors and ubiquitous cameras. The deluge of IoT data
creates enormous opportunities for us to explore the physical
world, especially with the help of deep learning techniques.
Traditionally, the Cloud is the option for deploying deep
learning based applications. However, the challenges of Cloud-
centric IoT systems are increasing due to significant data
movement overhead, escalating energy needs, and privacy
issues. Rather than constantly moving a tremendous amount
of raw data to the Cloud, it would be beneficial to leverage the
emerging powerful IoT devices to perform the inference task.
Nevertheless, the statically trained model could not efficiently
handle the dynamic data in the real in-situ environments,
which leads to low accuracy. Moreover, the big raw IoT data
challenges the traditional supervised training method in the
Cloud. To tackle the above challenges, we propose In-situ AI,
the first Autonomous and Incremental computing framework
and architecture for deep learning based IoT applications.
We equip deep learning based IoT system with autonomous
IoT data diagnosis (minimize data movement), and incremental
and unsupervised training method (tackle the big raw IoT
data generated in ever-changing in-situ environments). To
provide efficient architectural support for this new computing
paradigm, we first characterize the two In-situ AI tasks (i.e.
inference and diagnosis tasks) on two popular IoT devices (i.e.
mobile GPU and FPGA) and explore the design space and
tradeoffs. Based on the characterization results, we propose
two working modes for the In-situ AI tasks, including Single-
running and Co-running modes. Moreover, we craft analytical
models for these two modes to guide the best configuration
selection. We also develop a novel two-level weight shared In-
situ AI architecture to efficiently deploy In-situ tasks to IoT
node. Compared with traditional IoT systems, our In-situ AI
can reduce data movement by 28-71%, which further yields
1.4X-3.3X speedup on model update and contributes to 30-70%
energy saving.

I. INTRODUCTION

Recently, Internet of Things (IoT) technology, which con-

nects numerous physical things to the Internet, has radically

increased our ability to sense data from the physical world

(e.g. buildings, factories, automobiles, the environment, and

even ourselves). Networking giant Cisco estimates that the

number of connected devices worldwide will be up to 50

billion in 2020 [1]. The resulting deluge of data from

these IoT devices creates enormous opportunities for us to

explore the physical world, leading towards a smart life.

However, realizing this potential requires us to address a

huge challenge — extracting meaningful information and

patterns based on the raw IoT data captured from noisy

and complex environments. Deep Learning, one of the

most promising approaches, can perform more robust and

reliable inference tasks. To achieve this, the deep learning

techniques leverage many-layer neural networks to learn

levels of representation and abstraction that make sense

of data. Recently, deep learning based approaches have

achieved great success on many IoT applications, such as

smart cities [2], transportation [3], and smart farming [4].

Traditionally, due to its huge compute power and scal-

ability, the Cloud is often the best option for training and

evaluating neural networks. For Cloud-centric IoT systems,

data generated from an IoT device first needs to be sent to

the Cloud for processing, after that the result is sent back to

the IoT device. However, the large data transmission through

networks presents a grand challenge and may raise privacy

issues as well.

Recently, with the increasing compute power of mobile

devices, there is a growing interest in performing deep

learning inference task on mobile platforms [5–7]. The

idea is similar to the in-situ data processing scheme called

fog computing proposed by Cisco [8]. Although in-situ/fog

computing eliminates the effect of fluctuating network qual-

ity and protects users privacy (sensitive data is processed

locally), it introduces a new problem: low accuracy in the

inference results. In fact, many deep learning based studies

have relied on the same assumption: the world hands me

a static, potentially very large, ideal dataset and I train an

accurate, potentially complex model [9]. This fiction departs

from the real IoT systems in two key factors: data is dynamic
and unlabeled. Therefore, the statically trained model could

not efficiently handle the dynamic data in the real in-situ

environments. For example, in wild animal monitoring, the

changing environmental conditions, such as variation in

lighting, could affect the image quality and pose a great

challenge towards achieving acceptable accuracy. To achieve

an ideal accuracy, all the real IoT data still needs to be

transferred to the Cloud to retrain the model, which results

in the same challenges with the Cloud-centric IoT system:

big data movement, requirement of stable and fast network

and privacy issues. This motivates us to design a method

to improve the accuracy of IoT system with the minimum
data movement. Moreover, the gathered IoT data is largely

unlabeled and it is impractical to have human to label all the

IoT raw data. Therefore, the traditional supervised training

is not suitable for the IoT based system, which demands an
unsupervised method to truly unleashing the potential of big
raw IoT data.
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To tackle the above challenges, we propose In-situ AI,

an Autonomous and Incremental computing framework and

architecture for deep learning based IoT applications. Our

In-situ AI consists of two parts: In-situ AI Node and

Cloud. In the Cloud, we first utilize an unsupervised pre-
training method to obtain the features from big raw IoT

data. Then the inference network can be trained based on

the features learned by the unsupervised network (we name

this procedure as transfer learning). Since the unsupervised

pre-training is well-trained on the big raw IoT data, the

inference network, which is based on the unsupervised

network, can achieve a high accuracy using a limited
amount of labeled data. Our In-situ AI node features a novel

function: autonomous IoT data diagnosis (diagnosis task).

It allows the IoT nodes to detect whether the IoT data is

valuable (unrecognized) or not; and send the valuable data

to the Cloud for incremental training. With the diagnosis

task, only a small proportion of IoT data (i.e., incorrect

predictions) needs to be uploaded to the Cloud for further

action. Note that our In-situ AI Node is an edge-computing

node, which is responsible for processing data from multiple

sensors. By incrementally training the deep learning models

on the incoming IoT data, our In-situ AI can fit the ever-
changing environments in the in-situ system with reduced
data movement.

In an IoT node of In-situ AI, both inference task and

diagnosis task are running simultaneously, which brings

tremendous computing pressure for IoT devices. To effi-

ciently deploy these two tasks on IoT devices, we first

characterize these In-situ AI tasks (i.e. inference and diag-

nosis) on two popular IoT devices (i.e. mobile GPU and

FPGA). Our characterization results show: (1) a tradeoff

exists between fast response time and energy-efficiency;

(2) latency and energy-efficiency are two key metrics for

inference task, while energy-efficiency is the only design

concern for the diagnosis task (3) GPU’s energy-efficiency

is always better than that of FPGA when only one AI task

is running, while the interference on GPU is severe when

two AI tasks are concurrently running; (4) a weight shared

architecture is demanded for FPGA implementation. Then

we propose two working modes (i.e. Single-running and Co-

running) to meet the various needs of IoT environments.

The Single-running mode focuses on the situation where

the inference task is not always running. Thus, diagnosis

task can share the same in-situ platform with inference task

at different time slots. The Co-running mode is applied to

the scenario where the inference task should be available

24/7. In this mode, diagnosis task has to run with inference

task simultaneously on the in-situ platform. We craft various

analytical models, including time and resource models, to

guide the best configuration selection for these two working

modes. To avoid the interference between inference and

diagnosis tasks in Co-running mode, we implement a two-

level weight shared FPGA design.
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Figure 1: Two Typical Deep Learning based IoT Systems.

Figure 2: Samples from Real IoT Data [12].

Evaluation results show that our analytical model could

effectively guide the configuration selection across various

IoT scenarios. Compared with traditional IoT systems, our

In-situ AI can reduce data movement by 28-71%, which

further yields 1.4X-3.3X speedup on model update and

contributes to 30-70% energy saving.

In summary, we make the following key contributions:

• We present In-situ AI, the first Autonomous and Incre-

mental in-situ computing framework and architecture

for deep learning based IoT applications, to improve the

accuracy of traditional deep learning based IoT systems

with minimum data movement.

• To the best of our knowledge, this paper is the first work

to introduce incremental and unsupervised learning in

IoT system to tackle the big raw IoT data generated in

ever-changing in-situ environments.

• Our In-situ AI features an autonomous IoT data diagno-

sis, which greatly reduces the communication overhead

and the pressure of model updating in the Cloud.

• We develop a novel two-level weight shared architec-

ture for In-situ AI tasks and craft analytical models to

guide the best configuration selection.

The rest of this paper is organized as follows. Section

II introduces the background and motivation. Section III

proposes our In-situ AI framework. Section IV describes

our In-situ AI architecture design. Section V evaluates the

In-situ AI. Related works and conclusions are discussed in

Section VI and VII, respectively.

II. BACKGROUND AND MOTIVATOIN

A. Deep Learning based IoT System: The Challenges

1) Cloud-centric IoT System: Fig. 1(a) illustrates a typ-

ical Cloud-centric IoT system. The raw data acquired by

the sensors (e.g. cameras) in IoT nodes is sent to neural

networks deployed in the Cloud. After the inference task

(e.g. classification and recognition) is performed, the result

is sent back to the IoT node. However, there are several

disadvantages for this Cloud-centric IoT system: (1) a large

amount of data is uploaded to the Cloud via networks,

resulting in energy and latency overheads; (2) a fast and

stable connection to the Cloud is mandatory at all times,

which is impractical in many scenarios, such as astronomy

observation in a remote area, video surveillance for wildlife
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TABLE I: ACCURACY OF CNN MODELS ON SERENGETI
Data set AlexNet (80%) GoogleNet (83%) VGGNet (93%)
Serengeti 54% 62% 72%

behavioral studies; and (3) sending sensor data to the Cloud

may raise security and privacy issues.

2) In-situ/Fog Computing: To tackle the challenges in

Cloud-centric IoT system, Fig. 1(b) introduces in-situ/fog

computing based IoT system, where the deep learning model

is trained in the Cloud using a static, potentially very large,

ideal dataset, such as ImageNet [10]. Then the model is

deployed into the IoT node to perform the inference task.

However, since real IoT data is collected in a dynamic and

less ideal condition, there is a new challenge in the In-situ

based IoT system: low accuracy in the inference results. For

example, the pictures in Fig. 2 are selected from Snapshot

Serengeti dataset [11], which consists of millions of real

camera trap images in Serengeti National Park. In the real

in-situ environment, animals do not behave in a predictable

way like Fig. 2(a). For instance, some images do not contain

the whole body of an animal because the animal is too close

to the camera (see Fig. 2(b)). Also, animals may be captured

in random poses as Fig. 2(c). Weather condition also affects

the quality of images, such as poor illumination in Fig. 2(d).

TABLE I illustrates the accuracy of various Convolutional

Neural Networks (CNNs) [12–14] on these real IoT data

(Snapshot Serengeti Dataset). As shown, all the well-trained

CNNs on large-scale ImageNet dataset suffer a much lower

accuracy in real scenarios. For instance, the accuracy of

AlexNet drops from 80% to 54%. Therefore, the static model

trained in the Cloud could not efficiently handle the dynamic

data in the real in-situ environments.

To cater to the ever-changing environment in in-situ

systems and achieve an ideal accuracy, these deep learning

models should be incrementally trained on the real IoT data.

Since the training procedure is performed in the Cloud, all

the real IoT data needs to be transferred to the Cloud, which

still results in the same challenges with the Cloud-centric

IoT system: big data movement, requirement of stable and

fast network and privacy issues. This motivates us to design

a method to improve the accuracy of IoT system with the
minimum data movement.

Traditionally, the deep learning models are trained in the

Cloud with a supervised method, which requires a large

amount of human efforts to label the training data. In the

IoT system, with more and more raw data from numerous

IoT nodes, it is difficult for us to label these big IoT data.

Therefore, the traditional supervised training is not suitable

for the IoT based System, which demands an unsupervised
method to truly unleashing the potential of big raw IoT data.

III. IN-SITU AI FRAMEWORK

In this section, we first provide an overview of the pro-

posed In-situ AI framework. Then we evaluate our system by

examining whether it solves the challenges in the traditional
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Figure 3: Spatial Supervisory Signal.
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Figure 4: An Overview of In-situ AI Framework.

deep learning based IoT systems. Finally, we analyze the

characteristics of the tasks running in our In-situ AI.

A. An Overview of In-situ AI

To tackle the challenges of big raw IoT data, we argue that

the deep learning based IoT system should be equipped with

an unsupervised method and improve accuracy with reduced

data movement. In this subsection, we first introduce how

to implement the unsupervised learning method. Then, we

give an overview of our In-situ AI framework. Finally, we

discuss how to improve the accuracy of IoT system with the

minimum data movement.

Although it is impractical to label all the IoT data, for-

tunately there are some supervisory signals in IoT data that

we can leverage to perform the unsupervised training. Spatial

context information is one of such supervisory signals [15–

17]. Fig. 3 demonstrates how to leverage spatial context

information (the relative positions of patches within an

image) to implement unsupervised training [15]. First, we

divide an image into a 3x3 grid. These 9 tiles are reordered

via a randomly chosen permutation ([4,7,0,3,8,5,1,6,2] in

Fig. 3) from a predefined permutation set and are then

fed into the unsupervised neural network. The task is to

predict the index of the chosen permutation. Its output

is a probability vector with 100 classes and each class

corresponds to one index in the permutation set. After the

network is well-trained, the class with the same index as the

chosen permutations index should have the max probability

(Class1 in Fig. 3), which means the network could correctly
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Figure 5: Accuracy Comparison using Various
Training Methods.

Figure 6: Accuracy and Time Comparisons by
Fine-tuning Different Layers.

Figure 7: Unsupervised pre-training on
Datasets with Different Sizes.

recognize the relative positions of 9 tiles. Recent research

demonstrates that doing well on this context prediction task

requires the deep learning model to be sophisticated at

recognizing objects and their parts [17], meaning this task

is related to the object recognition task [15]. Therefore, the

features learned from this unsupervised context prediction

task can be further leveraged to improve the accuracy of

recognition task.

Fig. 4 illustrates our proposed In-situ AI framework,

which consists of In-situ AI node and Cloud. In the Cloud,

we first train the unsupervised network, which leverages

the spatial context information to obtain features of objects

from the big raw IoT data, and this procedure is named as

unsupervised pre-training. Then, the extracted features are

transferred to implement a target inference network, such

as object recognition. As we know, the deep convolutional

neural network consists of many convolutional layers, where

its first layers learn features similar to Gabor filters and color

blobs [18]. Such first-layer features appear not to be specific

to a particular dataset or task, but general in that they are

applicable to many datasets and tasks. Therefore, our transfer

learning approach is to train an unsupervised network using

the method in Fig. 3 and then copy its first n layers (n is 3 in

Fig. 4) to the first n layers of a target inference network. In

this way, the inference network could leverage the existing

features in the unsupervised network and it only needs to

train the remaining layers with a limited amount of labeled

data. In Fig. 4, the inference network performs the transfer

learning based on the unsupervised network, so the accuracy

of inference network is proportional to the accuracy of the

unsupervised network. Since the unsupervised pre-training

is well-trained on the big raw IoT data, the inference task,

which is based on the unsupervised network, can achieve a
high accuracy using a limited amount of labeled data.

To cater to the ever-changing environment in in-situ

systems, the network needs to be incrementally trained on

the incoming IoT data. Traditionally, we utilize all IoT raw

data to retrain the network. However, not all the raw data

have the same value. The training data can be divided into

two classes: recognized class (could be correctly recognized)

and unrecognized class (fails to be recognized). Compared

to the recognized data, unrecognized data is more valuable

for the accuracy of network. As shown in Fig. 4, besides

the inference task running on IoT node, we deploy the

unsupervised network trained in the Cloud to the IoT node to

select the valuable data autonomously (we name this task as

diagnosis task). At the beginning, we deploy initialized infer-

ence and diagnosis models (trained with a limited amount

of data) to our In-situ AI node to perform the inference

and diagnosis tasks respectively. Then, these models can be

incrementally improved with more and more newly acquired

IoT data. During this procedure, the diagnosis task in IoT

node only sends the unrecognized data to the Cloud for

further incremental training, which greatly reduces the data

movement. In this way, our In-situ AI can improve its
accuracy on dynamic data in real in-situ environments with
the reduced data movement.

To summarize, by utilizing unsupervised pre-training on

the large-scale raw IoT data, the accuracy of deep learning

based IoT system could be greatly improved. Moreover,

with the diagnosis task on IoT node, most IoT data can

be processed locally and only a small proportion needs to

be uploaded to the Cloud for further action.

B. Evaluation of In-situ AI Framework
In this subsection, we evaluate our proposed In-situ AI

framework by answering the following questions. First, will

the unsupervised pre-training improve the accuracy of the

inference task? Second, how much are the unsupervised

pre-trained network and inference network related? Third,

although only transferring the valuable data could reduce

the data movement, is this enough to improve the accuracy?

In the following experiments, we utilize NVIDIA Titan X

to perform the training. Our training data and testing data

are from ILSVRC2012 [10]. All the deep learning models

are trained by Caffe [19].
First, we validate whether the unsupervised pre-trained

network improves the accuracy of inference network. Fig. 5

illustrates the accuracy comparison using various training

methods. The gray line indicates the network is trained

from scratch on a limited labeled data (100k images). The

other two lines demonstrate the network is transfer-learned

from an unsupervised pre-trained network using the same

amount of labeled data (100k images). Among them, the

orange line is based on a pre-trained network with 71%

accuracy, while the green line corresponds to the pre-trained

network with 88% accuracy. With the unsupervised pre-

trained network, the accuracy of inference network could

be greatly improved (30% improvement). Moreover, higher
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accuracy on the unsupervised pre-trained network (green line

in Fig. 5) will lead to a better recognition result for the

inference network.

Next, we demonstrate how much the unsupervised pre-

trained network and inference network are related. We take

the unsupervised pre-trained network and transfer its features

to train the inference task by locking various convolutional

layers. In Fig. 6, CONV-i indicates that all layers from

conv1 to convi are locked and all subsequent layers are

randomly initialized and retrained. If we keep no layer

locked and retrain all the layers (CONV-0), we obtain the

maximum accuracy (59%). The accuracy is 34% when only

fully connected layers are trained (CONV-5). There is a

significant improvement (from 34% to 56%) when conv4
and conv5 are also trained (CONV-3). This shows that the

features learned from conv1 to conv3 are also applicable

to the inference task and they can share the weights of first

three convolutional layers. Note that the weights sharing will

reduce the training time since the weights in the first layers

are fixed and do not need to be retrained. Compared with

CONV-0 (without weight sharing), the weight sharing from

conv1 through conv3 can achieve 1.7X speedup.

Finally, we validate whether the valuable data benefits

accuracy in Fig. 7. There are total 200k images in this

experiment. We take the incremental training method. First,

we train a network from scratch using 50k images (Net-50k).

Then we leverage this network to process the remaining

150k images and obtain the images with incorrect results.

Finally, we train a network (Net-Err) by fine-tuning Net-50k

on these incorrect images. We also obtain Net-50k-150k and

Net-50k-200k by fine-tuning Net-50k on the remaining 150k

images and all the 200k images respectively. Compared with

Net-50k, our Net-Err (only using incorrect images) nearly

achieves the same accuracy improvement as Net-50k-200k

(using all 200k images). Since it is only fine-tuned on the

incorrect images, Net-Err not only demands the minimum

data movement but also takes the least time to finish the

transfer learning as shown in Fig. 7.

C. An Analysis of In-situ Tasks

In this subsection, we give a brief introduction to inference

and diagnosis tasks and analyze their characteristics.

1) Inference Task: In IoT systems, the inference task is

mainly responsible for object detection, recognition, and

classification, such as automatic animal recognition in a

wildlife sanctuary and anomaly detection in video surveil-

lance systems. These kinds of systems usually collect a

large set of data and demand real-time response. Therefore,

the inference task is an online task and must process the

inputs as quickly as possible. Moreover, most IoT nodes

are battery-powered, making them sensitive to energy con-

sumptions. Thus, an energy-efficient inference task is quite

important. To summary, in the design of inference task,

the latency and energy-efficiency are two key metrics for

optimization (i.e. consuming minimum energy under given

runtime constraint).

2) Diagnosis Task: The diagnosis task is responsible

for selecting the valuable data to upload to the Cloud for

further action. However, diagnosis task will aggravate the

processing burden in the IoT node, especially for the IoT

nodes with a limited computing resource. Fortunately, there

are still some opportunities to optimize the deployment of

diagnosis task. First, the latency of diagnosis task is not

critical since the incorrectly recognized data is not required

to be sent back to the Cloud immediately. Choosing the

valuable IoT data can be deferred until the computing

resource is available. Therefore, energy-efficiency is the only

design concern for the diagnosis task. Second, as shown in

Fig. 4, the unsupervised network for diagnosis task shares

some CONV layers with the inference network and they

utilize the same weights. What is more, for the diagnosis

task, all its input patches (9 patches in Fig. 3) also share the

same CONV layers. These two kinds of weight sharing in

the CONV layers provide us an opportunity to simplify the

design of In-situ AI architecture.

IV. IN-SITU AI ARCHITECTURE

To design an efficient architecture for In-situ AI, we first

characterize our In-situ AI tasks on the two mainstream in-

situ platforms: Mobile GPU (i.e. NVIDIA TX1 [20]) and

FPGA (i.e. Xilinx Virtex-7 VX690T [21]). These devices

are deployed into the edge-computing nodes, which process

data from multiple sensors. In this section, we first introduce

two state-of-the-art designs for deep neural networks on

GPU and FPGA respectively. Based on the characterization

results, we propose two working modes for the In-situ

AI tasks: Single-running and Co-running modes. Then we

design our In-situ AI architectures for these two modes.

A. Characterizations of In-situ AI Tasks

1) State-of-the-art Design: As we know, convolutions are

the most performance-critical operations in CNNs, involving

computationally intensive multiply-accumulate operations.

As shown in Fig. 8, one input of CONV layers is a 3-

dimension image, consisting of N 2-dimension input feature

maps. The other input is a 4-dimension kernel, which has

M filters and each filter has N channels of K ×K weights.

The output is generated by 3-dimensional convolutions of

the filters with the inputs. Each filter generates one output

feature map, resulting in M feature maps. Next, we introduce

the state-of-the-art implementation of CONV layers on GPU

and FPGA.

a) GPU: To leverage the well-optimized matrix-

multiplication libraries, such as cuBLAS and cuDNN [22],

GPU normally converts the convolutional operations into

matrix-multiplication operations. As shown in Fig. 8, in

step 1©, an operation called im2col [23] stretches out

the local regions in the input features into column-major
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Figure 8: Convert Convolutions to Matrix Multiplication.

matrix (Dm). Similarly, in step 2© the weights of the

filters are stretched out into filter matrix (Fm). Then the

original convolutional operation is converted into a matrix

multiplication (Fm × Dm) in step 3©. In Fig. 8, the filter

matrix Fm has dimensions M ×NK2, while the data matrix

Dm has dimensions NK2 ×RC. The output matrix Om has

dimensions M×RC. Therefore, we can calculate the number

of operations (ops) in a CONV layer based on the number

of multiply-accumulate operations of Fm ×Dm:

CONVops = 2×M×N ×K2 ×R×C, (1)

where a single multiply-accumulate operation counts as 2

ops. The CONVops is usually used to measure the com-

putational intensity in a CONV layer. The computational

procedure of matrix-matrix multiplication on GPU is similar

to the algorithm developed by Volkov and Demmel [24]. It

divides the output matrix Om into multiple sub-matrices of

the size of m×n and each of these sub-matrices is computed

by a thread block. Therefore, the number of thread blocks

(denoted by Gridsize) used for computing the output matrix

is determined by the number of sub-matrices:

Gridsize =

⌈
M
m

⌉
×
⌈

R×C
n

⌉
. (2)

Normally, Gridsize should be larger than the maximum

number of blocks (maxBlocks) that could be simultaneously

executed on GPU so that GPU resource is fully utilized.

b) FPGA: Note that the matrix-multiplication based con-

volution comes at the expense of data duplication, which

diminishes the overall performance gains in bandwidth-

limited FPGA platforms [25]. Moreover, the transformation

(i.e. im2col) also introduces extra overheads. Therefore,

the state-of-the-art implementation of CONV layers on the

FPGA, such as DianNao [26] and Eyeriss [27], are still based

on traditional convolutional operations.

The pseudo code of CONV layer is shown in Fig. 9. It

employs loop tiling, reordering and unrolling to increase

processing throughput and reduce data transfer. Since the

innermost two loops are unrolled (based on Tm and Tn), it is

able to process Tn input feature maps and Tm output feature

maps in parallel. As shown in Fig. 10, to implement these

two unrolled loops, Tm vector dot-product units (each of

them has a width Tn) are constructed. An adder is added

after each unit, which yields Tm × Tn multipliers. Given a

resource budget (e.g. the number of DSP slices), one can

find the optimal Tm and Tn for a given CONV layer.

6����������

6�������������

6���
���������

Figure 9: Pseudo Code of CONV Layer.
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Figure 10: A Typical Convolution Engine.

2) Characterization of Current Design for In-situ AI:
a) Inference Task: The inference task is sensitive to

the response time, especially for real-time applications.

For instance, the response time should be less than 33ms

for a real-time surveillance camera with 30FPS. For deep

learning based tasks, batch processing is a common method

to improve throughput. In Fig. 11, the latency of inference

task (using AlexNet) increases along with the batch size

on both mobile GPU and FPGA. To reduce latency, the

inference task usually prefers to choose a small batch size.

However, from the energy-efficiency perspective (i.e. images

per second per watt), it is less desirable to utilize small batch

size due to the low efficiency of FCN layers, which results

from low reuse of FCN weights and the limited bandwidth of

embedded platforms. Fig. 12 illustrates the time breakdown

of inference task across various batch sizes. The FCN layers

account for up to 50% of overall runtime with small batch

sizes (i.e. 1, 2, and 4) on both FPGA and GPU.

For the power-sensitive IoT node, it is important to

find an optimal batch size (Bsize) where the inference task

consumes the least energy under given runtime constraint.

Considering the energy-efficiency, the optimal one should

be the maximum batch size where latency is less than the

end-user requirement. Therefore, it is necessary for us to

design an analytical time model to guide the selection of

the optimal batch size for the inference task.

b) Diagnosis Task: To minimize power consumption, our

In-situ tasks are running on the same In-situ platform.

Considering the requirement for inference task (whether it

should be available 24/7 or not), there are two working

modes for diagnosis task to concurrently run with inference

task. One is Single-running mode, where the inference task

is not always running. For example, the inference task runs
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Figure 11: Latency and Performance/Power Ratio with Various Batch Sizes.

Figure 12: Runtime Breakdown of Inference Task.

in the daytime, while the diagnosis task works at night. In

this mode, diagnosis task can share the same in-situ platform

with inference task at different time slots. The other working

mode is Co-running mode, where the inference task should

be available 24/7. In this mode, diagnosis task has to run

with inference task simultaneously on the in-situ platform. In

this subsection, we demonstrate the characterization results

when diagnosis task is working in the above modes.

Single-running mode: The diagnosis task is not sensitive

to the response time. Thus, batching method can be utilized

to improve the efficiency of FCN layers. On GPU, batching

turns the computational pattern of FCN layers from matrix-

vector multiplication to matrix-matrix multiplication. Thus,

GPU’s energy-efficiency (Performance to power ratio) im-

proves with the batch size in Fig. 11. For FPGA, its energy-

efficiency is fixed with various batch sizes. This is because

its implementation does not consider the optimization of

batch size in Fig. 9. We propose a batching optimization by

introducing an extra batch loop in Fig. 13 (marked green). In

this way, FCN weights can be reused for different samples

in an input batch, which will greatly reduce data access of

weights. As shown in Fig. 14, our batching optimization can

also improve the energy-efficiency of FCN layers.

However, the situations are different for the CONV layers

in Fig. 14. Batching can improve GPU energy-efficiency

of CONV layers, while it yields no effect on the energy-

efficiency of CONV layers running on FPGA. Fig. 15

compares the resource utilization of CONV layers between

the two implementations. The resource utilization of GPU

is determined by:

UtilGPU =
E f f ective Computation

Comp. Capacity×Cycles
=

Gridsize

maxBlocks×
⌈

Gridsize
maxBlocks

⌉ . (3)

Similarly, the resource utilization of FPGA can be ex-

pressed as:

UtilFPGA =
N ×M

Tn ×Tm ×�N/Tn�×�M/Tm�
. (4)

Batching method increases the dimension of data matrix

Dm from NK2 × RC to NK2 × RC × Bsize, which further

increases Gridsize and GPU utilization (UtilGPU ). Therefore,

batching method can improve the energy-efficiency of CON-

V layers on GPU. However, as shown in (4), the resource

utilization of FPGA is not related with the batch size.
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Figure 13: Batch Optimization for FCN Layer (R=C=K=1).

Figure 14: Perf./Power Ratio with Various Batch Sizes.

Therefore, as shown in Fig. 14, FPGA’s energy-efficiency

on CONV layers is fixed across various batch sizes and

it is worse than that of GPU. What is more, the overall

energy-efficiency (CONV+FCN) of GPU is better than that

of FPGA.

Considering energy-efficiency is a common optimization

goal for inference and diagnosis tasks, we choose GPU

as our in-situ platform to deploy our In-situ AI tasks in

Single-running mode. For the time-sensitive inference task,

we should develop a time model to identify the optimal batch

size so that it achieves the maximum performance/power

ratio under the time requirement. For the diagnosis task

without time requirement, big batch size will improve its

energy-efficiency. However, processing with big batch size

will easily run out of GPU memory. Therefore, we should

propose a resource model to guide the maximum batch size

selection and avoid the out-of-memory issue.

Co-running mode: In this working mode, the inference and

diagnosis tasks will be running simultaneously. However,

the interference between these two tasks is severe on GPU

in Fig. 16. Our experiment result shows the latency of

inference task will increase up to 3X due to the interference

from the diagnosis task. For FPGA, its hardware-based

design can effectively reduce the interference by separating

hardware resource between these two tasks. Therefore, we

take FPGA in Co-running mode. First, we should also ensure

that the runtime of inference task meets the requirement of

end-user with a time model. Second, we should leverage

the opportunity of weight sharing to optimize the energy-

efficiency of diagnosis task.

B. In-situ AI Architecture Design

In this subsection, we introduce our In-situ AI architecture

design. Our design consists of two cases, namely Single-

running mode design and Co-running mode design. As

discussed in Section IV-A, GPU is responsible for the

processing in Single-running mode, while the tasks in Co-

running mode are accelerated by our FPGA-based design.

1) Single-running Mode: Note that although both in-

ference and diagnosis tasks are deployed on GPU, their

configurations (i.e. batch size) are determined by different

models. For instance, for inference task, where latency is

an important metric, the maximum batch size is decided by

the time constraint derived from our time model. To avoid
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Figure 15: A Comparison of Resource Utilization.

Figure 16: Interference between Inference and Diagnosis.

the out-of-memory issue, the maximum batch size of the

diagnosis task is limited by the memory resource model.

Next, we will discuss the time and resource models.

a) Time Model: To craft a time model for In-situ AI

tasks, we need to model its runtime of CONV layers

and FCN layers respectively. Since the CONV layers are

always running on GPU, their performance on GPU (i.e.

TCONV GPU ) can be estimated as [28]:

TCONV GPU =
CONVops

Achi. Per f .
=

CONVops

maxOPS×Util
. (5)

where maxOPS is the maximum operations delivered by

GPU per second and Util is the resource utilization.

As discussed in Section IV-A2, the operation of FCN

layers on GPU is changed from matrix-vector multiplication

to matrix-matrix multiplication, which is similar to the

computational pattern in CONV layers. Therefore, we can

also use the time model of CONV layers to calculate the

runtime of FCN layers on GPU. However, most of FCN

layers are memory-intensive, and their performance is not

only determined by GPU computational roof (i.e. maxOPS),

but also limited by its memory bandwidth (i.e., MBW ) [29].

Achieved Per f .= Min(maxOPS,CT M×MBW ), (6)

where CT M is computational operations per memory access.

For GPU based FCN layers, its maxOPSGPU and CT MGPU
are determined by (7) and (8), respectively:

maxOPSGPU = 2Freq×nCUDACore×UtilGPU , (7)

CT MGPU =
Layerops

Data Access
=

2M×NK2 ×RC×Bsize

Din +Dw +Dout
. (8)

As shown in Fig. 8, Din is NK2 ×RC×Bsize, Dw is M×
NK2 and Dout is M×RC×Bsize. Note that K, R and C are

1 for the FCN layers.

b) Resource Model: For the diagnosis task, its configura-

tion (i.e. Bsize) is mainly limited by memory resource:

Din +Dw +Dout ≤ RAMcapacity. (9)

2) Co-running Mode: As discussed in Section IV-A2, we

leverage FPGA as our in-situ platform to perform inference

and diagnosis tasks concurrently. To avoid the interference

between inference and diagnosis tasks, we allocate dedicated

computing resource to each task. The simplest solution is

to duplicate the convolution engine in Fig. 10 and assign

dedicated convolution engine for each task. As shown in

Fig. 17, since diagnosis task has 9 independent inputs (9
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Figure 17: Weight Shared Architecture (WS) for In-situ AI tasks
(IW: Inference Weight, SW: Shared Weight, DW: Diagnosis Weight).
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Figure 18: Two-level Weight Shared Architecture (WSS).

patches), it has 9 convolution engines and each is responsible

for one patch input. To utilize the opportunity of weight

sharing, we connect two weight sources, dedicated and

shared weights, to each convolution engine. When layers are

shared, the convolution engine will take the shared weight

as its kernel weight; otherwise, choose its dedicated weight.

Although the input of diagnosis task is a partition of that

of inference task, these two inputs have the same number of

channels (3 in Fig. 4). Considering inference and diagnosis

tasks have the same number of filters in each layer, they

will have the same number of input feature maps (M) and

output feature maps (N) in each layer. Therefore, we use

the same unrolling parameters (Tm and Tn) to implement the

convolution engine in Fig. 17. All the convolution engines

have the same number (Tm) of vector dot-product units (each

of them has Tn multiply-add unit). Although this architecture

can utilize weight sharing between inference and diagnosis

tasks (we name it as WS) to greatly reduce off-chip weight

access, it has a problem of resource idleness due to its

uniform unrolling strategy. Specifically, inference task has

a larger output than that of diagnosis task in each layer (e.g.

55×55 vs 27×27 in the first layer), which further results in

more computations in inference task. However, the uniform

unrolling strategy allocates the same computing resource for

each task. Therefore, there will be idle resource in diagnosis

task due to its fewer computations. In our experiment, the

convolution engines in diagnosis task will be idle during

75% of cycles.

To avoid the idleness, we should allocate the computing

resource based on its computational load. As shown in (1),

the computational load in each layer is proportional to its

output feature map size (R×C). To ensure inference and

diagnosis tasks have the same runtime, their computing

resource should be proportional to their output feature

map sizes. Thus, the optimal unrolling strategy should be

performed on its output neurons. In the left of Fig. 18, this

strategy is illustrated by unrolling Tr × Tc output neurons

(14× 14). Each output neuron resides in a PE (Processing

Element). At each clock cycle, Tr or Tc input neurons are

received and shifted from right to left (red arrow) or down
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Figure 19: Our Overall In-situ AI Architecture.

to up (green arrow) across PEs and one kernel weight is

broadcast to all PEs. Each PE keeps performing calculation

for its corresponding output neuron by multiplying the input

neuron with kernel weight and accumulating the partial

result, till all the computations for this output neuron are

accomplished. It takes K×K clock cycles to complete Tr×Tc
output neurons. For each input, since the computational load

in inference task is four times of that of diagnosis task, the

computing resource for inference task should be four times

as that of diagnosis task as well. In this way, inference and

diagnosis tasks finish within the same time and the idleness

is avoided.

In the right of Fig. 18, we use the convolution engine

(unrolling output neurons) to design a weight shared archi-

tecture for the processing of CONV layers. The inference

task is executed by one convolution engine with 14×14 PEs

and the diagnosis task runs on 9 convolution engines with

7×7 PEs. We also allocate two sources, dedicated weight,

and shared weight, to each convolution engine to enable the

weight sharing in the first layers. Note that there are two

levels of weight sharing in Fig. 18. One is weight sharing

among different convolution engines and the other is the

weight sharing in one convolution engine (one weight is

shared by all PEs in one convolution engine). Therefore, we

name our in-situ architecture in Fig. 18 as Weight-Share-

Share (WSS).

Different from CONV layers, where the output neurons in

the same output feature map share a kernel, each output neu-

ron in FCN layers has its own kernel. Therefore, considering

that the PEs in our convolution engine have the same kernel

weight, our WSS is not applicable to FCN layers. We still

need to take the convolution engine in Fig. 10 (No-Weight-

Sharing, i.e. NWS) to process FCN layers. Therefore, as

shown in Fig. 19, our overall In-situ AI architecture consists

of two parts: WSS Group and NWS. WSS Group is respon-

sible for CONV layers, while FCN layers run on NWS. To

maximize the processing throughput, several Weight-Share-

Share architectures (WSS) are combined to construct a WSS

Group. In the WSS Group, the light blue area is for inference

task while the dark blue area is for diagnosis task. Although

all the WSS in WSS Group share the same input (whole

image or 9 patches), they have their own kernel weights, so

they can generate multiple output feature maps in parallel.

The outputs are stored in inference and diagnosis buffers

respectively. Finally, NWS chooses one input from the two
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Figure 20: Pipeline-based FPGA Implementation.

buffers to perform the processing of FCN layers.

Moreover, WSS and NWS compose a pipeline (shown in

Fig. 20) so that they can work in parallel. We also take

the batch processing in FCN layers to improve the perfor-

mance/power ratio on FPGA. To maximize the throughput of

the pipeline-based design, the elapsed time on each pipeline

stage should be identical. Since the batch optimization is

only performed on FCN layers, the time consumption of

FCN layers should be Bsize times that of CONV layers,

shown in Fig. 20. What is more, the sum of DSP slices used

by WSS and NWS cannot exceed the total DSP resource of

FPGA (i.e. Computing Resource Constraint in (10)).

WSS Groupsize ×DSPWSS +DSPNWS ≤ DSPtotal . (10)

Since WSS unrolls Tr × Tc output neurons, it consumes

Tr ×Tc (DSPWSS) DSP slices. Similarly, DSPNWS is Tm ×Tn
because NWS unrolls Tn input feature maps and Tm output

feature maps. Based on the total operations in convolutional

layer (1) and the number of DSP in WSS, we can derive the

time spent in each layer:

TCONV FPGA =

⌈M/WSS Groupsize

⌉×NK2 ×⌈R/Tr

⌉×⌈C/Tc

⌉
Frequency

. (11)

As discussed in Section IV-B1, the time spent on FCN

layers is not only determined by FPGAs computational roof,

but also limited by its memory bandwidth (MBW). Thus, the

real runtime (TFCN FPGA) is:

TFCN FPGA = Max(TFCN Comp.,TFCN Mem.), (12)

where TFCN Comp. is
�N/Tn�×�M/Tm�×Bsize

Frequency and TFCN Mem. is
Numdata access/MBW . Thus, our overall runtime is:

T = 2Max(TAll CONV FPGA ×Bsize,TAll FCN FPGA), (13)

where TAll CONV FPGA is the sum of time in each CONV

layer (TCONV FPGA) and TAll FCN FPGA is the sum of time

in each FCN layer (TFCN FPGA). For the In-situ AI task,

its optimization goal is to obtain the maximum processing

throughput under the time requirement of end-users. Thus,

we can find the optimal batch size (the maximum batch size

that meets the time constraint in (14)) to implement our In-

situ AI architecture for Co-running mode.

T ≤ Tuser requirement . (14)

V. EVALUATION

In this section, we first evaluate our In-situ AI node

from microarchitecture design perspective. We mainly dis-

cuss how our analytical time models guide the optimal

configuration in Single-running mode and compare our

two-level shared architecture (WSS) with other traditional

architectures (NWS and WS) in Co-running mode. Next,

we demonstrate the overall benefits of our In-situ AI Cloud

by comparing it with several alternatives. We use several

metrics, including energy consumption, model update time
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Figure 21: Speedups over Non-batch Method on GPU.

Figure 22: Runtime Comparison on CONV layers.

and data movement, in our evaluation. Our IoT platforms

are Mobile GPU (i.e. NVIDIA TX1) and FPGA (i.e. Xilinx

Virtex-7 VX690T).

A. In-situ AI Node

1) Single-running Mode: As discussed in Section IV-A2,

the best architecture is GPU in this working mode. For the

inference task on GPU, we develop a time model to achieve

the maximum performance/power ratio under any given time

requirement. Without the time model, it is common to use

the non-batching method to realize the fast response time.

We compare the implementation based on our time model

with simple non-batching methods. We also compare our

technique with the best case, which is obtained from brute-

force based profiling, to understand the headroom for further

improvement. Fig. 21 shows that our method yields an

average of 3X speedup over the non-batching method and the

speedup is especially high for the AlexNet based inference

task. Note that compared to the resource underutilization

on AlexNet based inference task, most of the computing

resource is utilized by deeper networks such as VGGNet.

Therefore, VGGNet based inference task only achieves an

average of 1.1X speedup. In addition, as Fig. 21 shows, the

performance achieved by our method close to the best case

on both AlexNet-based and VGGNet-based inference tasks,

indicating the effectiveness of our time model.

2) Co-running Mode: To evaluate our two-level shared

architecture (WSS), we perform all CONV layers on NWS,

WS and WSS and compare the runtime of these three

architectures in Fig. 22. Note that all the architectures are

implemented with the same number of PEs (2628). In this

experiment, the weights of each layer are loaded from off-

chip first and then the computation is performed. Besides,

we study the impact of weight sharing by performing the

convolutional layers under the following sharing strategies,

CONV-0, CONV-3 and CONV-5, representing weights shar-

ing of the first 0, 3 and 5 layers respectively. No matter

how the sharing strategy is, our WSS outperforms the other

two architectures in terms of compute time, while WS has

the worst compute performance because of idleness in its

convolution engines. Due to the optimization in weight

Figure 23: Overall Performance Comparison .

sharing, the time spent on data access in WSS is much less

than that in NWS and decreases as the number of shared

layers increases.

Next, we evaluate the overall performance of our pipeline-

based In-situ AI architecture (WSS-NWS). Fig. 23 illus-

trates the maximum overall processing throughput for each

architecture under various requirements of latency. For the

processing of FCN layers, WS and WSS-NWS allow inputs

in the same batch to share kernel weights to reduce off-chip

access, while for NWS, two cases (NWS and NWS-batch)

are applied (i.e. whether to share weights in a batch). In

Fig. 23, due to the lack of batching optimization, NWS

could not increase its processing throughput even under

a loose requirement of latency, such as 800ms. For all

the other architectures, an increase in throughput can be

observed. However, this improvement of throughput ends

when the performance of FCN layers is limited by the

compute resource instead of off-chip bandwidth. Due to the

underutilization of resource, WS is unable to meet the 50ms

requirement (marked as x) and always produces the lowest

throughput. Although NWS-batch performs better than NWS

and WS, its maximum throughput (at 800ms) is still lower

than our WSS-NWS’s throughput under the most strict

latency requirement (50ms). Among all the requirements

of latency, our WSS-NWS can achieve the best processing

throughput.

B. In-situ AI Cloud

In this section, we compare our In-situ AI (depicted in

Fig. 24(d)) with the following three IoT systems. Fig. 24(a)

illustrates the traditional IoT system equipped with unsu-

pervised pre-training, where all the data acquired in IoT

node is sent back to the Cloud and used to perform the pre-

training. In Fig. 24(b), a diagnosis network is deployed into

the Cloud, so that pre-training only focuses on the valuable

data. Fig. 24(c) deploys the diagnosis task into the in-situ

node to reduce data movement. Compared with Fig. 24(c),

our In-situ AI in Fig. 24(d) leverages the weight sharing

to further reduce the overhead of the transfer learning. All

data in the Cloud is trained with NVIDIA Titan X. We

mimic a real in-situ scenario, where IoT data is acquired

incrementally. And our model is also incrementally updated

based on the incremental data. First, we collect 100K images

to train an initial model. Then our model is continually

updated using 200k, 400k, 800k and 1200k images. We first

compare data movement among these IoT systems during
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Figure 24: Four Deep Learning based IoT Systems.

Figure 25: Energy Consumption and Model Update Time.

each update stage in TABLE II. Then, we characterize their

energy consumptions and model update time in Fig. 25.

Comparing row ‘a/b’ and ‘c/d’ in TABLE II, we can

see the amount of data movement reduced by our in-situ

diagnosis task. Note that the reduced volume increases with

the acquired data in IoT node. Initially, all the 100k data

needs to be transferred to the Cloud to train the initial model.

Then, as more and more data received, the accuracy of model

can be gradually improved, which further leads to more and

more data being correctly recognized in IoT node. Therefore,

the unrecognized data that needs to be transferred become

fewer and fewer in TABLE II.

Fig. 25 illustrates the energy consumptions in the Cloud

and model update time among these four IoT systems. Our

In-situ AI consumes the least energy due to the following

reasons: (1) The re-training data is reduced by the diagnosis

task (i.e. the difference between ‘a’ and ‘b’ in Fig. 25); and

(2) The transfer learning is only performed on the last two

CONV layers due to the weight sharing (i.e. the difference

between ‘c’ and ‘d’ in Fig. 25). We also demonstrate the

speedup on the model update time. Compared with the

traditional IoT system (i.e. ‘a’ in Fig. 24), when the number

of acquired data is 100k, our In-situ AI has a 1.15X speedup.

Note that as the number of data increases, our In-situ AI will

achieve more speedup on model update time (up to 3.3X).

VI. RELATED WORK

GPU-based deep learning: Sirius [30] and DjiNN [31] bring

the community the characterization of GPU acceleration

server system running DNN services and provide insights

into designing future warehouse-scale computer architec-

tures for DNN services, while our work focuses on the

characterization of DNN based applications on IoT nodes,

especially for mobile GPU- and FPGA- based platforms.

D3NN [28] proposes an analytical time model for GPU

accelerated CNN processing and its time model mainly

focuses on the CONV layers. We further improve this

TABLE II: A COMPARISON OF NORMALIZED DATA MOVEMENT
IoT system 100k 200k 400k 800k 1200k

a/b 1 1 1 1 1
c/d 1 0.72 0.51 0.35 0.29

model to include the modeling of FCN layers. P-CNN [32]

presents a user satisfaction-aware CNN inference framework

across different GPU architectures. To achieve high energy

efficiency on mobile devices, Lane et al. [7] develop DeepX,

a software accelerator for deep learning inference tasks.

Compared with the above works, our In-situ AI includes

more functions, such as unsupervised pre-training and au-

tonomous data diagnosis.

FPGA implementation for deep learning: Zhang et al. [29]

propose an analytical design scheme based on the roofline

model to find the fastest FPGA implementation for CONV

layers. They further extend their work to FCN layers to

implement the entire CNN on FPGA [25]. However, their

work overlooks the optimization of weight sharing and is not

applicable to our In-situ AI tasks. Instead of a single large

processor, [33] tries to improve the computational efficiency

by designing multiple smaller specialized processors for

different layers. However, their work mainly focuses on

the CONV layers and does not consider the optimization

on FCN layers. Zhu et al. [34] propose an OpenCL-based

method to implement CNN on FPGA and they also compare

the performance/power ratio per layer to a high-end GPU

based implementation. However, they do not provide an

analytical model to guide the best configuration selection

for FPGA and GPU.

IoT system: To reduce the latency, there is a trend to perform

the data analysis on IoT nodes. Li et al. [35] develop a

sustainable in-situ server system to pre-process data, i.e.,

bringing computation to where the data is located. However,

they do not consider deep learning based application as their

workloads and include accelerators (e.g. FPGA and GPU)

in their in-situ platform. Lane et al. [6] conduct an early

resource characterization of deep learning on IoT devices.

However, they overlook the problem of accuracy and always

utilize a static model to perform the recognition.

VII. CONCLUSION

This work presents In-situ AI, the first autonomous and

incremental computing framework and architecture for deep

learning based IoT applications. We first characterize two

In-situ AI tasks on two popular IoT devices and explore the

design space and tradeoffs. To meet various IoT scenarios,

we propose two working modes: Co-running and Single-

running modes and craft analytical models for these two

modes to guide their best configuration. We also develop a

two-level weight shared architecture for Co-running mode.

Compared with traditional IoT systems, In-situ AI can

reduce data movement by 28-71%, which further yields

1.4X-3.3X speedup on model update and contributes to 30-

70% energy saving.
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