
Building High-Performance Smartphones via Non-Volatile
Memory: The Swap Approach

Kan Zhong Tianzheng Wang§ Xiao Zhu Linbo Long
Duo Liu∗ Weichen Liu Zili Shao† Edwin H.-M. Sha

College of Computer Science, Chongqing University, liuduo@cqu.edu.cn
Key Lab. of Dependable Service Computing in Cyber Physical Society (Chongqing Univ.), Ministry of Education

§Department of Computer Science, University of Toronto, tzwang@cs.toronto.edu
†Department of Computing, The Hong Kong Polytechnic University, cszlshao@comp.polyu.edu.hk

Website: http://nvm-swap.bitbucket.org

ABSTRACT
Smartphones are getting increasingly high-performance with
advances in mobile processors and larger main memories
to support feature-rich applications. However, the storage
subsystem has always been a prohibitive factor that slows
down the pace of reaching even higher performance while
maintaining good user experience. Despite today’s smart-
phones are equipped with larger-than-ever main memories,
they consume more energy and still run out of memory.
But the slow NAND flash based storage vetoes the possi-
bility of swapping—an important technique to extend main
memory—and leaves a system that constantly terminates
user applications under memory pressure.
In this paper, we revisit swapping for smartphones with

fast, byte-addressable, non-volatile memory (NVM) tech-
nologies. Instead of using flash, we build the swap area
with NVM, to allow high performance without sacrificing
user experience. Based on NVM’s high performance and
byte-addressability, we show that a copy-on-write swap-in
scheme can achieve even better performance by avoiding un-
necessary memory copy operations. To avoid fast worn-out
of certain NVMs, we also propose Heap-Wear, a wear level-
ing algorithm that more evenly distributes writes in NVM.
Evaluation results based on the Google Nexus 5 smartphone
show that our solution can effectively enhance smartphone
performance and give better wear-leveling of NVM.

1. INTRODUCTION
Smartphones are not just phones any more as more func-

tionality being integrated. With features such as installing
third-party applications and multi-tasking, today’s smart-
phones offer unprecedented user experience. However, this
comes with a price: the richer functionality an application

∗Duo Liu is the corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
EMSOFT’14, October 12 - 17, 2014, New Delhi, India.
Copyright 2014 ACM 978-1-4503-3052-7/14/10 ...$15.00.
http://dx.doi.org/10.1145/2656045.2656049.

Figure 1: Percentage of reduced process termina-
tions with swapping when running various applica-
tions in a Google Nexus 5 smartphone (Android 4.4)
for 30 minutes. Swapping can reduce around 66%
to 91% of process terminations.

can provide, the more demanding it is on computing, mem-
ory and storage resources. Fast mobile processors and large
low power main memories have always been heralding the di-
rection of satisfying such demands and the trend is likely to
continue. Nevertheless, the NAND flash based storage—an
important but usually ignored component—has been evolv-
ing very slowly and failing to catch up with mobile proces-
sors and large main memories [9, 13]. This discrepancy leads
to a unique phenomenon that is only happening in smart-
phones: processes constantly get terminated (“killed”) when
memory is under pressure because swapping to flash is usu-
ally disabled to avoid sacrificing performance [6]. To show
the effectiveness of swapping, in Figure 1 we plot the per-
centage of reduction on process termination when running a
mixture of applications for 30 minutes in a Google Nexus 5
smartphone1 with swap enabled. With different memory ca-
pacities on the X-axis, swapping can help reduce around 66%
to 91% of process terminations, greatly lowering the chance
of an application being terminated when the system is short
for memory. However, the slow performance of NAND flash
prohibits adopting swapping directly, and the dominant so-
lution today is still to simply terminate processes when the
system is under pressure.

Emerging byte-addressable, non-volatile memory (NVM)
technologies such as phase change memory (PCM) [26], spin-
transfer torque RAM (STT-RAM) [7] and memristor [23] are

1Specifications at http://www.google.com/nexus/5.

Table 1: Comparing PCM, DRAM and NAND flash [4, 22].

Attributes DRAM PCM Flash

Non-volatility No Yes Yes
Write bandwidth ∼GB/s 50–100MB/s 5–40MB/s
Write latency 20–50ns ∼1us ∼500us
Erase cycles ∞ 108 − 109 104 − 105

changing this situation. Compared to NAND flash, these
NVM products offer not only faster (near-DRAM) perfor-
mance, but also larger erase cycles. As shown in Table 1,
PCM exhibits much better write latency and endurance when
compared to flash memory. A plethora amount of work have
been proposed to further achieve near-DRAM performance
and better endurance for PCM [1, 2, 5, 10, 15, 18, 19, 30].
Other NVM technologies such as STT-RAM could promise
even faster performance than DRAM [11]. Therefore, we
propose to re-adopt swapping with the help of NVM. In-
stead of using flash memory, we build the swap area with
NVM, to avoid constant process termination while main-
taining good performance. Unlike flash memory, NVM is
byte-addressable and can be manufactured as DIMMs to be
placed on the memory bus, available to load and store in-
structions and thus removing all the overhead induced by
the storage stack. Such combination of high-performance
and low energy consumption makes NVM an attractive can-
didate for swapping in smartphones.
In this paper, we revisit swapping in smartphones and

propose NVM-Swap, an NVM-based approach to build high-
performance swapping without sacrificing user experience.
NVM-Swap re-adopts swapping in smartphones by augment-
ing the DRAM with NVM and using it as the swap area,
thus extending memory capacity. To avoid excessive and
unnecessary overheads from the block-based storage stack,
we utilize NVM’s byte-addressability and attach it directly
to the memory bus, so that we can access it via a simple
memory interface, instead of building a similar block de-
vice found in Compcache [6]. To further reduce unnecessary
overheads, we propose copy-on-write swap-in (COWS), for
read requests to directly get data from the swap area with
zero memory copy. When a swapped-out page is accessed
again, COWS sets up the page table mapping and returns
the page in NVM directly, without first copying the page
out of the swap area. When a write happens to that page,
we do the actual swap-in by copying the page from NVM
to DRAM (thus the name “copy-on-write swap-in”). COWS
reduces the consumption of DRAM, allowing even more ap-
plications to be retained in DRAM, and NVM’s high perfor-
mance can ensure that the user experience is not degraded
because of swapping.
Despite these advantages, NVM is not perfect. In particu-

lar, most of them are vulnerable to unbalanced writes (e.g.,
PCM has limited number of programming cycles of 108 –
109 [26]). Pages that are swapped out could hit arbitrary
swap slots in an unbalanced manner, which shortens the
lifetime of NVM, making NVM-Swap unpractical. To elim-
inate the negative effect brought by this issue, we propose a
heap-based wear leveling technique called Heap-Wear, which
evenly distributes pages across the whole NVM space. As
we have mentioned earlier, a lot of wear leveling techniques
have been proposed to mitigate the endurance problem of
NVM [1, 2, 10, 15, 30]. However, different from those exist-
ing work, which usually depends on data comparison write

(DCW) [2, 28] or segment switching [19], Heap-Wear uses a
space-efficient heap structure with swap-specific information
to handle write requests. We assign each page that is being
swapped out a “young” swap slot using the age information
maintained in the heap structure. Write requests are then
more evenly distributed across all the swap slots, resulting
in a more balanced write pattern and a more durable NVM-
based swap area.

We implement NVM-Swap in Google Android 4.4.2 based
on the Google Nexus 5 smartphone. Though our experi-
mental platform is 32-bit and the 4 GB address space is
very limited, note that the size of memory is increasing con-
tinuously. However, larger size of memory will lead to more
energy consumption. To alleviate this issue, an NVM-based
swapping area is still needed to reduce energy consumption.
In this paper, we only focus on performance and endurance
issues. We have discussed energy related issues in previ-
ous work [29]. Experimental results show that NVM-Swap
can avoid terminating most processes and reduce application
launch time by more than 20% when compared to the no-
swap case and a flash-based swap. In addition, with Heap-
Wear, swap slots are more uniformly written, giving us a
durable NVM-Swap. We keep our design general enough to
ensure that NVM-Swap can be easily adopted by platforms
other than Android. Our system is available at:

nvm-swap.bitbucket.org

In summary, we make the following contributions:

• We revisit swapping in smartphones and propose NVM-
Swap, which uses emerging NVM for swapping, to ex-
tend memory without sacrificing performance;

• We propose copy-on-write swap-in (COWS) to avoid
unnecessary memory copy induced by read-only re-
quests, furthering improving performance;

• To make NVM-Swap practical, we propose Heap-Wear,
which is a space-efficient wear leveling algorithm that
can extend the lifetime of NVM.

The remainder of this paper is organized as follows. Sec-
tion 2 outlines background on swapping and NVM in smart-
phones. Section 3 details the design of NVM-Swap. Evalua-
tion results are shown in Section 4. We discuss related work
and conclude in Sections 5 and 6, respectively.

2. BACKGROUND
In this section, we first give background on NVM. We then

discuss swapping in smartphones.

2.1 Emerging Byte-Addressable NVM
Non-volatile memory (NVM) technologies have been dis-

covered by computer architects to replace DRAM and even
flash memory because of their low power consumption, high
density and byte-addressability. Compared to DRAM, NVM
keeps data by changing the physical state of its underlying
material without maintaining constant current. One promis-
ing candidate is phase change memory (PCM) [26], which
stores data by changing the state of the phase change mate-
rial (e.g., GST) between amorphous and crystalline. It ex-
hibits longer access latency (80ns – 1µs) than DRAM (20ns
– 50ns) and also limited write endurance (around 108 – 109

programming cycles) [15, 30]. To overcome these problems,
various wear leveling and caching schemes have been pro-
posed [1, 2, 10, 15, 30]. It is widely accepted that the mature

PCM products will feature a small DRAM/SRAM cache to
provide both fast data access and reasonable lifetimes. Thus
we also do not regard performance as a major problem in
this paper. Moreover, the swap area is usually cleared after
use and prepared as a clean slate before being used again.
Therefore, endurance is not a major concern, especially in
the context of swapping.
Other promising NVM technologies include spin-transfer

torque RAM (STT-RAM) [7] and memristor [23]. Both
STT-RAM and memristor have the potential of providing
at least DRAM performance. However, their performance
numbers are still in constant change. For example, the re-
ported latency for memristor ranged from hundreds of pi-
coseconds to tens of nanoseconds [20]. Because of its low
latency (10ns – 25ns [7]) and non-volatility, STT-RAM can
be used to build both on-chip cache and main memory [11,
27]. These newer NVMs also have better endurance behavior
than PCM and NAND flash. Should they become mature in
the future, a unified NVM system that features both NVM-
based main memory and swap area would become possible
for even higher performance.
We argue that in general these byte-addressable NVMs are

suitable for building a high-performance swapping device in
smartphones. Despite different internals, they could all be
built as DIMMs. They also share such properties as near-
DRAM performance, better endurance than flash and low
power consumption. Thus, we do not target at any specific
type of NVM in this paper, nor do we rely on any specific
timing or endurance constraints to design our system.

2.2 Swapping
Swapping is an effective way to extend memory by borrow-

ing space from I/O devices (e.g., flash and disks) in modern
operating systems [17]. Originally, swapping refers to mov-
ing all of the memory pages of a process to storage to make
space for others. Paging, on the other hand, refers to mov-
ing just pages of memory. With virtual memory based on
pages, swapping and paging have become synonyms. Howev-
er, swapping still means processes could be swapped in and
out in units of non-contiguous pages. To correctly describe
the proposed technique, we therefore use the term ”swap-
ping” in this paper. When the system is under pressure and
finds itself difficult to satisfy memory allocation requests,
the OS will choose to write (“swap”) some memory pages
to some I/O devices (the “swap area”) and allocate these
page frames to the requesting applications or OS compo-
nents. Because of the scarcity of DRAM and the abundance
of disks and flash memory in capacity, the swap area is usual-
ly backed by these two types of devices via a block interface.
Pages that are being swapped out must go through all the
storage stack to be written in the storage medium. There-
fore, the underlying storage becomes an important factor on
swap performance. For better swap performance, the server
market has seen high-performance flash memory based so-
lutions, such as FlashVM [21]. However, the situation in
mobile devices is different, despite they can also use NAND
flash as the swap area.
Different from enterprise-level flash-based solid state drives,

mobile NAND flash storage performs notoriously worse [9,
13]. Therefore, swapping is usually disabled in smartphones
to avoid sacrificing performance. Take Android as an exam-
ple, instead of using a flash-based swap area, it by defaults
uses a so called “low memory killer” that constantly moni-

Memory management subsystem

Page replacement algorithm

DRAM page frames

Swap area

Flash memory

Select victim

Block layer

Swap

in/out

(a) Traditional flash-based swap

Memory management subsystem

Page replacement algorithm

DRAM page frames

Swap area

NVM page frames

Select victim

Memory Interface

Swap

in/out

(b) NVM-based swap

Figure 2: Comparison between traditional flash-
based swapping and NVM-Swap. (a) A flash-based
swap area requires swapping requests go through the
whole storage stack. (b) NVM-Swap uses memory
interface to access the swap area, which is backed
by NVM (attached to the memory interface). Note
that in NVM-Swap, the swap area becomes part of
the memory management subsystem and requires no
I/O operations.

tors the system and terminates processes to make room for
incoming memory requests. The latest Google Android 4.4
allows“swap to ZRAM”(a.k.a“Compcache”) [6], which com-
presses memory pages and saves them in a dedicated RAM
disk to save memory space. However, smartphones do not
have “unlimited” energy like general purpose systems. Usu-
ally they are powered by batteries with a capacity of only
around 1000mAh – 2000mAh due to various reasons, such as
size and weight. Moreover, most smartphones do not fully
close an application (thus resources not released) when it is
switched to the background for faster switch-back. Various
daemons also keep running all the time to provide useful
information for the user (e.g., notifications for new instant
messages). These features make battery capacity scarce in
smartphone, and yet “swap to ZRAM” will worsen the sit-
uation: compression needs more computation power from
the CPU, while the RAM disk requires even larger memory.
Both requirements will inevitably lead to more energy con-
sumption, making it even faster to drain the battery which
is already “always short on capacity”. Therefore, we argue
that the ultimate solution to extending memory is to enable
a “real” swap area that is backed by emerging fast NVM,
instead of a RAM disk that absorbs even more energy and
computation power.

3. NVM-BASED SWAPPING
We build NVM-Swap by utilizing the byte-addressability

and non-volatility of NVM. Instead of managing NVM as a
block device and adopting the existing swap infrastructure
in modern OSes, we attach NVM directly to the memory
bus, eliminating I/O and the whole storage stack overheads.
As we have discussed, NVM-Swap features two additional
optimizations: (1) COWS which avoids unnecessary memo-

ry copy and (2) Heap-Wear which evenly distributes write
requests across the whole swap area for enhancing NVM
durability. In the rest of this section, we first highlight the
architecture of our system by comparing it with the existing
approach. We then discuss COWS and Heap-Wear in detail.

3.1 Architecture
In our previous work [29], we proposed the in-memory

paging architecture, in which NVM is used as the swap area
and shares part of the physical address space with DRAM.
The architecture of using emerging byte-addressable NVM
as swap in smartphones differs from using a traditional I/O
device based swap (e.g., flash). We highlight this difference
in Figure 2. In Figure 2(a) we show how a traditional flash-
based swapping approach works in smartphones. As part
of the memory management subsystem, the page replace-
ment algorithm scans DRAM page frames for a victim when
memory is under pressure. The victim is then evicted from
DRAM and written to the swap area, via the block layer,
which is part of the storage stack. Note that swap area is
backed by flash memory, which is attached to the I/O bus.
Therefore, the swapping in/out processes must go through
the whole storage stack.
In an NVM-based swap area, as shown in Figure 2(b),

swapping will not involve any I/O operations as we attach
the NVM to the memory bus. Besides DRAM, the OS also
sees an NVM area which shares the same physical address
space with DRAM. We focus on the software side in this
paper, but expect the memory controller to report to the
OS on the partitioning of the physical address space, such
that the OS could know which address space range belongs
to DRAM and NVM upon start. The OS can then manage
NVM via page tables. In our system, we still use DRAM as
main memory and flash as storage. Note that in Figure 2(b)
the swap area is accessed via a memory interface and be-
comes part of the memory management subsystem. When
the system is under memory pressure and finds it difficult
to allocate more memory, the page frame reclaim algorithm
will try to pick victim page frames from running applica-
tions and swap them out to NVM. The page replacement
algorithm works in the same way as before. Victim pages
are directly written to the swap area through simple memcpy
calls, instead of via expensive I/O transfers.
Compared to hybrid memories, which treat NVM as part

of main memory, swapping using NVM effectively re-uses
the infrastructure that already existed in mobile OSes and is
much less intrusive to implement. With NVM-Swap, swap-
ping becomes pure memory operations, instead of I/O re-
quests, eliminating the need to go through all the storage
stack to access data in the swap area, and allowing better
utilization of NVM’s high performance. Moreover, the con-
sistency and persistence concerns of using NVM found in
hybrid memory or NVM-specific library proposals [24] do
not exist in NVM-Swap, since swap area is discarded after
use, and will be re-initialized when it is setup.

3.2 Copy-on-Write Swap-In
Though avoiding the storage stack in swapping and the

high-performance nature of NVM eliminate most overhead,
we find that swap-ins in NVM are actually inducing unnec-
essary extra memory copy: victim pages will be copied first
to the swap area and then copied back to main memory (i.e.,
DRAM) when these pages are requested again by applica-

virt - phys

Access request

Swap area

NVM page framesPage table entry

DRAM page frames

(2) RO mapping

(1) Virtual address (4) RW

mapping (3) Copy

Figure 3: Copy-on-write swap-in (COWS). (1) The
CPU uses virtual address to access a page that was
swapped out; (2) The page fault handler sets up
read-only (RO) permission for the requested page
in NVM; (3–4) Any attempt to write the page will
trigger a page fault, which will copy the page from
NVM to DRAM and grant it read-write (RW) per-
mission. Application can read the data directly in
NVM and no data are transferred between DRAM
and NVM for read requests, avoiding extra memory
copy operations.

tions. The kernel handles such requests through the page
fault handler, which reads the swap area to fetch the request-
ed page frame, set up new page table mappings and return
to the user application. The whole operation will involve at
least one NVM page read, one DRAM page write and one
page table entry (PTE) write. However, a large number of
such accesses are read access and will not modify the page.
The whole swap-in process is actually inducing extra mem-
ory copy operations. NVM’s byte-addressablity provides a
great opportunity to reduce such unnecessary memory copy
operations for read requests, since the requested memory
page already resides in memory—the NVM—though in a
different region (the swap area).

We adopt the concept of copy-on-write for swap-ins to re-
move unnecessary memory copy operations between NVM
and DRAM. As shown in Figure 3, copy-on-write swap-in
(COWS) directly sets up page table mappings for the ap-
plication when handling page fault incurred by accessing a
page that was swapped out. The memory pages are then
become available directly to the user space. In this way, we
avoid first reading and then copying the page from NVM
to DRAM. No memory copy operation is required between
DRAM and NVM. COWS naturally utilizes the fast (at least
near-DRAM) read performance of most NVM technologies.
We do not allow direct write to the NVM page if it was
swapped in by COWS by marking the page as “read-only”
in its page table entry. If the application needs to modi-
fy the page, we do the actual swap in—copy the requested
page from NVM to DRAM and set up new page table map-
pings accordingly. Again we rely on the page fault handler
to copy the page from NVM to DRAM and setup the page
table entry (recall that COWS first maps the page as read-
only, and a write attempt to the page will then trigger a page
fault). Compared to the traditional approach, we speed up
the swap-in process for read-only requests by avoiding trans-
ferring a whole page between DRAM and NVM. The only
overhead left is one write for the page table entry, which
only involves writing a 32-bit entry in most today’s ARM-
based smartphones. It is true that most NVMs are slower
than DRAM, however, in general it is expected that their
read performance is very close to DRAM. The NVM pages
will also be cached by the processor caches, just like caching
DRAM pages, which has been shown to be effective [3].

(a) The free slot list and min-heap data structure.

head = list head

top = top of min-heap

Write page to head slot

No

Slot

exchange

Write page to top slot

top is in use

No

Yes
Yes

Age difference
> TH

(b) Illustration of slot selection in Heap-Wear.

Figure 4: Design of Heap-Wear.

Figure 5: Example of Heap-Wear.

3.3 Heap-Wear
Most emerging NVMs are vulnerable to unbalanced writes.

For example, a PCM cell can only sustain 108 – 109 pro-
gramming cycles. However, by default pages that are being
swapped out could hit arbitrary swap slots in an unbalanced
manner as the traditional swap architecture assumes a disk-
based swap area. Unbalanced writes shorten the lifetime of
NVM and could render NVM-Swap unpractical. To solve
this problem, we propose Heap-Wear, a space-efficient wear
leveling algorithm. It extends the lifetime of NVM by main-
taining the age information of swap slots and only allocating
young slots to store swapped-out pages. Heap-Wear catego-
rizes swap slots into three types: young, old and zombie

slot. Young and old slots are slots that are used (written)
for fewer and more times, respectively. Zombie slots store
valid pages that never or infrequently updated. Consequent-
ly, zombie slots stay young while other slots may be written
frequently and become older, leading to an unbalanced erase
pattern and unpractical NVM-Swap.
To solve this problem, Heap-Wear always chooses a young

slot as the candidate for swapped-out pages, with the help
of a free slot list and a heap structure called min-heap. The
free slot list is a doubly linked list consisting of all unused
slots, while min-heap maintains the age information of all
the swap slots. Figure 4(a) illustrates the structure of these
two components. Note that the head slot in the free slot
list is always preferred as the first choice, and the top of

Algorithm 3.1 Heap-Wear algorithm

Input: list: free slot list; heap: slot min-heap; TH: slot
exchange threshold.

Output: offset: the slot used to hold an inactive page.

1: Let head = list.head.
2: Let top = heap.top.
3: if head.age− top.age > TH then
4: if top is used then
5: /* Perform a slot exchange. */

Copy the page in top slot to head slot.
6: head.age = head.age+ 1.
7: Adjust heap to maintain the heap property.
8: Remove head slot from list.
9: Update the slot mapping table.
10: if top is referenced via page table then
11: Update all the PTEs which referenced top.
12: end if
13: else
14: Remove top form list.
15: end if
16: /* Put the victim page to the top slot. */

offset = top.
17: else
18: /* Put the victim page to the head slot. */

Remove head form list.
19: offset = head.
20: end if
21: return offset.

min-heap always records the age of the youngest slot. As
shown in Figure 4(b), once a free slot in the head is selected
for storing a swapped-out page, we compare the age of the
candidate to that of the top in the min-heap. If the age
difference is greater than a predefined threshold TH (i.e.,
the selected slot is older), a slot exchange operation is per-
formed (assume the top slot currently holds a valid page), to
exchange the page in the selected candidate slot with that
of the top slot. Otherwise, write the page to the top slot
directly. In contrast, if the selected slot is younger than the
top slot, the swapped-out page is written to the selected slot.
The detailed process is depicted in Algorithm 3.1.

In Heap-Wear, if a page is swapped out, the correspond-
ing PTE will record the information of that page. After
exchanging the page between two slots, we employ a map-
ping table to reflect this change. Figure 5 shows an example
of exchanging pages between two slots. Initially, slot A is on
top of the min-heap and holds a swapped-out page, which
corresponds to PTE X, that means slot A is not referenced
via page table. Then to allocate a slot for the victim page,
slot B is selected from free slot list. Comparing the ages
of slot A and slot B finds the slot exchange condition is
satisfied. Therefore, pages in slots A and B are exchanged,
with corresponding PTEs re-mapped. Otherwise, if slot A is
referenced via page table, we not only perform slot exchang-
ing but also update all the PTEs that are pointing to slot
A. We make all new PTEs reference slot B through reverse
mapping—the corresponding PTEs of all processes that use
a particular page are mapped to that page [17].

Copying a page in NVM induces constant cost, leading
to an O(lgN) complexity of Heap-Wear, which is actually
for maintaining the min-heap. A 128MB swap area only
needs no more than 1MB main memory space to store the
data structure. Note that the age counter of each slot is
stored at the beginning of the NVM swap area, and the
NVM memory space is pre-computed. When the swap area

Table 2: Workload applications.

Category Application

Browser Android Browser, Firfox Browser for An-
droid, Google Chrome, Opera

Social
networking

Facebook, Google+, Pinterest, QQ, Sina
Weibo, Skype, Twitter, WhatsApp

Multimedia Google Play Music, MX Player, TTpod
Player, Youtube

Office Evernote, Gmail, Google Drive, Google
Maps, Office Mobile

Gaming Angry Brid, Asphalt 8 , Temple Run 2
Online

shopping
Amazon, Ebay, Fancy, Google Play,
TaoBao

News BBC News, Engadget, Flipboard,
Google Newsstand, NBC News, NetEase
News, Netflix, TED, Zaker

is activated, the age counters are loaded to main memory,
and only synchronized periodically to avoid wearing out the
underlying NVM cells. With only one extra NVM page copy
when exchanging two NVM swap slots, Heap-Wear can avoid
zombie slots efficiently.

4. EVALUATION
We have implemented NVM-Swap in Google Android 4.4

for the Google Nexus 5 smartphone. In the Linux kennel,
we introduced a new memory zone for allocating NVM page
frames. The swap subsystem is modified to use memory
from this NVM zone. We also modified the page fault han-
dler to realize COWS and used functions in Heap-Wear to
manage swap slots. In our experiment, we do not target
at any specific type of NVM or emulate its latency values.
Though different NVM products have different performance
parameters, we believe that future mature NVM products
will generally provide near-DRAM performance and reason-
able lifetimes. Moreover, our system does not rely on any
specific type of NVM and can be easily deployed in differ-
ent NVM-based systems. In the rest of this section, we first
describe experimental setup, metrics and methodology. Fi-
nally, we discuss experimental results.

4.1 Experimental Setup
We run all experiments with a Google Nexus 5 smart-

phone. It features Qualcomm Snapdragon 800 processor
clocked at 2.26GHz and 2GB DRAM as main memory. Our
Nexus 5 model has 16GB internal flash storage. The Linux
kernel we use for Android is 3.4. We connect the smart-
phone to a desktop PC and use the Android debug bridge
(adb) in the Android SDK to communicate with it. For all
experiments, we reboot the phone and wait for a few min-
utes to ensure the device is idle. During the experiments,
the phone is always connected to a charger to make sure it
is working in its full performance capability.
We test three different swap variants: (1) flash-based, (2)

DRAM-based, and (3) NVM-Swap. For flash-based swap,
we use a 128MB file in the smartphone’s internal NAND
flash memory as the swap area2. The DRAM-based variant

2Linux allows use a dedicated partition or file as the swap
area. Both methods use the same block interface and we use
the file approach for simplicity.

Figure 6: Memory copy reduction results. For each
application category, COWS is able to reduce a lot
of memory copy operations, especially for browser
and social networking applications.

is essentially a 128MB RAM disk and for showing the over-
head induced by the storage stack alone. For NVM-Swap,
we replace part of DRAM with NVM. We use DRAM to
simulate NVM swap area by reserving 256MB memory from
main memory as NVM products are not yet widely available.
When the hardware becomes available, our system can be
quickly adopted. In addition to the 128MB capacity which
is the same as the other variants, we also test NVM-Swap
with 64MB and 256MB capacities to evaluate our system in
detail. For each experimental variant, we run seven types of
popular applications, as listed in Table 2. The applications
range from browser, social networking, to gaming, etc.

4.2 Metrics and Methodology
To evaluate the proposed technique, we collect the results

based on the following metrics. The corresponding evalua-
tion methodology for each metric is discussed as well.

Number of memory copy operations. We use this
metric to measure the effectiveness of COWS. We run all
the applications in each category shown in Table 2 for 15
minutes. All the applications are run in the variant with
COWS and without COWS, respectively. We count the to-
tal number swap-ins of each category and compare the re-
sults between the two configurations. For more accuracy, we
run each category in both configurations for five times and
calculate the average value.

Wear-leveling. We use a synthetic workload to evaluate
the effectiveness of Heap-Wear and its performance in NVM-
Swap. In detail, we add two system calls: swap_write()

(writer) and swap_read() (reader). The writer invokes the
scan_swap_map() function to get a swap slot and writes a
pre-allocated page to the slot. The flash and DRAM based
variants use the default version of this function in the Linux
kernel, while the function in NVM-Swap is modified to use
Heap-Wear. The reader randomly selects a swap slot that
is in use and then frees it. Note that this experiment is
synthetic and tries to evaluate the wear leveling behavior
of different swapping schemes by stressing the swap area.
We also measure the time consumed by both the writer and
reader. The writer writes 128GB data in total and the reader
repeats until all data are read out. We find that the amount
of data (128GB) is large enough to make sure all swap slots
are used during our experiment.

Application launch time. Application launch time is
an very important performance metric. However, it is not
straightforward to test application launch time and obtain
accurate results. We therefore use customized applications

Figure 7: Write distribution of a 128MB DRAM-
based swap. Due to the lack of NVM awareness,
writes are concentrated to certain swap slots, in-
stead of being evenly distributed. Such an unbal-
anced write pattern greatly reduces the lifetime of
NVM with limited endurance.

to collect the results of this metric. We designed five sim-
ple test applications, each of which loads a file of certain
size from NAND flash to main memory. This simulates the
application launch process, which essentially just loads ex-
ecutables, configuration files and shared libraries into main
memory. Before running these test applications, we first
run another simple application that allocates almost all the
available memory, making sure that the launch of new appli-
cations will trigger swapping. We run each test application
with the DRAM-based variant and NVM-Swap, and record
the time spent on loading the files. As a baseline, we also
run these experiments with swap disabled.
The experimental results based on the above metrics are

discussed in Sections 4.3 - 4.5.

4.3 Number of memory copy operations
Figure 6 shows the result for memory copy reduction. As

shown, COWS can help reduce around 40% – 75% of swap-
ins, which means a great number of memory copy operations
were reduced. According to the figure, we observe a lot of
reductions of memory copy operations for all categories. In
particular, browser and social networking applications ex-
hibit the highest number of memory copy reduction.
With COWS, we reduce the number of memory copy op-

erations by around 60% for browser, social networking, office
and online shopping applications. Moreover, for multimedia
and news applications, COWS can reduce more than 70%
of memory copy operations. The only overhead of COWS
is updating the page table entries (PTEs) when handling
page faults. Compared to actually swapping in NVM pages,
which needs one page copy and one PTE update, the over-
head of COWS is negligible.

4.4 Wear Leveling
Figure 7 illustrates the write distribution of a traditional

DRAM-based swap. The X-axis lists all the swap slots, and
the Y-axis plots the number that the slot on the X-axis is
written/used. As shown, in a DRAM-based swap, slots are
not used evenly and most writes are concentrated in a certain
number of slots, thus writes are not evenly distributed in the
whole swap area. The difference between the maximum and
minimum numbers of writes is as large as ∼2000.
Figure 9 shows the same metric of NVM-Swap using Heap-

Wear with different swap area sizes and thresholds. Com-
pared to DRAM-based swap, NVM-Swap distributes writes

Figure 8: Number of slot exchanges in Heap-Wear
with different swap sizes and thresholds. In general,
the larger the threshold, the fewer slot exchanges.

much more evenly across the whole swap area. The thresh-
old determines if a slot exchange should happen, which in
turn determines the degree of wear leveling (i.e., how even-
ly the writes could distributed). A smaller threshold will
distribute writes in the whole swap area more evenly, but
require more slot exchanges operations. As shown in Fig-
ure 9, in general a larger threshold leads to more variations
(larger difference between the maximum and minimum num-
bers of writes). In Figure 8, we plot the number of slot
exchanges with different thresholds and swap area sizes for
NVM-Swap. As the threshold increases on the X-axis, Heap-
Wear performs fewer slot exchange operations. The trend is
observed for all NVM swap sizes. However, with the same
threshold, the NVM swap size does not affect the number of
slot exchanges drastically.

We compare the time consumed by swap in/out opera-
tions (the “writer” and “reader” experiments described in
the Section 4.2) in Figure 10 with different swap sizes and
thresholds. In the figure, “regular write” represents swap-
ping out a page without slot exchange, while “wear level-
ing write” means swapping out a page with slot exchange.
“read time” represents the time needed to swap in a page
from the swap area, and “average write time” denotes the
average time needed to swap out a page. Regular writes on-
ly need one memory copy operation: copy the victim page
from DRAM to the swap area. In contrast, for wear leveling
writes, one memory copy is needed in slot exchange, and
another is needed to copy the victim page from DRAM to
the swap area. Besides these two memory copy operations,
wear leveling writes also need to update the slot mapping
table and the PTEs for page was mapped in paging space.

In the figure, for each swap size and threshold combina-
tion, we observe the similar trend that the wear leveling
write time is roughly more than twice of a regular write,
and the average write time only increases slightly. The rea-
son is that slot exchanges only comprise a small part of the
total swap-outs. Table 3 reports the detailed results of time
consumed by writing data to NVM swap area. The “Time”
column shows the average time consumed by writing a page
to NVM swap area during regular writes and wear leveling
writes, respectively. As shown, slot exchanges only com-
prise a small part of the total swap-outs. For instance, for a
128MB NVM-based swap area with a threshold of 256, slot
exchanges only comprise less than 0.2% of total swap-outs.
The “Count” column shows the total amount of writes dur-
ing regular writes and wear leveling writes, respectively. The
count numbers for regular write are all similar (though slow-
ly increasing) given increasing thresholds. However, a larger

(a) Threshold = 16.

(b) Threshold = 64.

(c) Threshold = 128.

(d) Threshold = 256.

Figure 9: Write distribution of NVM-Swap with different swap area sizes and thresholds.

threshold significantly helps reduce the amount of writes and
access time for wear leveling writes.

4.5 Application Launch Time
Application launch time is an important performance met-

ric, especially for smartphone users. Figure 11 shows the
time taken to launch a certain application (i.e., loading the
file from NAND flash) under different configurations. Each
application loads a file of certain size upon start. The size

of the file is set as 10MB, 15MB, 20MB, 25MB and 30MB
for the five applications (i.e., App1-5). In the figure we plot
three different schemes, including NVM-Swap, flash-based
swap, and a baseline when swap is disabled. Note that before
starting this experiment, we first make sure that the memory
is almost out of space. As a result, NVM-Swap and flash-
based swap, the page replacement algorithm will try to find
memory space for the application by swapping out inactive
pages. For swap disabled, the low memory killer will start

Figure 10: Access delay of NVM swap area.

Table 3: The results of writing 128GB data to NVM swap area.

Swap size Threshold Regular write Wear leveling write
Average write time (µs)

Time (µs) Count Time (µs) Count % of Total

64MB

16 3.65 31,847,385 8.95 920,615 2.81 3.80
64 3.30 32,485,435 8.51 282,565 0.86 3.34
128 4.70 32,560,165 11.17 207,835 0.63 4.74
256 3.38 32,705,784 8.90 62,216 0.19 3.39

128MB

16 4.80 31,802,620 10.58 965,380 2.95 4.97
64 3.66 32,521,793 9.41 246,207 0.75 3.71
128 3.45 32,638,017 9.23 129,983 0.40 3.47
256 4.64 32,714,292 10.58 53,708 0.16 4.65

256MB

16 5.13 31,823,880 10.91 944,120 2.88 5.29
64 4.01 32,264,143 8.91 503,857 1.54 4.08
128 3.53 32,645,484 9.90 122,516 0.37 3.55
256 5.94 32,592,368 12.28 107,417 0.33 5.96

Figure 11: Application launch time under different
swap implementations. App1-5 simulate application
launch by loading a file of size 10MB to 30MB (5MB
increment). The experiments are run when the sys-
tem is under heavy memory pressure, guaranteeing
to trigger swapping.

to terminate victim processes to make room for the memory
requests made by the experimental application. As shown in
Figure 11, using the low memory killer is the fastest way to
satisfy the memory request by killing victim processes when
compared to both swap schemes. However, the advantage
is not significant when compared with NVM-Swap, and yet
with NVM-Swap processes will not be forcedly terminated,
thus maintaining good user experience. Compared to flash-
based swap, NVM-Swap is more than 20% faster on average.
This is mainly due to the fast performance of NVM and the
removal of the storage stack in swapping related operations.
Therefore, we conclude that NVM-Swap can help maintain
good user experience (fewer process terminations) without
degrading performance, as we have predicted in Section 1.

5. RELATED WORK
Most related work lies in areas of flash-based mobile stor-

age and swapping. In general, NAND flash plays a key role
in smartphones. Kim et al. [13] evaluated the impact of sub-
optimal NAND flash based storage in smartphones and pro-
posed several pilot solutions, including using NVM to remov-
ing the storage bottleneck. File system configuration also af-
fect the performance of smartphones [14]. For example, uti-
lizing special features of the eMMC interface [8] could result
in faster mobile storage. To address the endurance problem
of flash, Liu et al. proposed PCM-FTL [16] to co-optimize
the lifetime of NAND flash and PCM in embedded systems.
FTL2 [25] is another write reduction caching design to tack-
le the endurance problem and performance degradation in
flash memory. FlashVM [21] integrates flash memory with
virtual memory to improve performance. FASS [12] is anoth-
er flash-ware swap system, but targets at raw flash memory
without using the flash translation layer. Although these
flash-based proposals utilize characteristics of flash memory
and perform well in general-purpose systems, they could not
be adopted directly by smartphones due to the sub-optimal
flash-based storage performance. We therefore seek better
medium as swap for smartphones.

6. CONCLUSION
In this paper, we have revisited swapping in smartphones

and proposed NVM-Swap to build high-performance smart-
phones. We replace part of the DRAM with NVM, and
use it as a swap area. Compared to flash-based swap so-
lutions in smartphones, NVM-Swap maintains good user
experience (much fewer process terminations) without de-
grading performance. To reduce the unnecessary memory
copy operations, we propose copy-on-write swap-in (COWS)
to guarantee zero-copy for read-only swap-in requests. To
overcome the drawback that most NVMs have limited write
endurance, we design Heap-Wear, a space-efficient wear-

leveling algorithm for NVM-Swap. Experimental results
show that NVM-Swap with COWS can reduce more than
50% of memory copy operations on average. Heap-Wear can
evenly distribute writes across the whole NVM swap area,
greatly improving the lifetime of NVM. Finally, application
launch time is reduced by more than 20% on average when
compared to flash-based swap. Moreover, NVM-Swap does
not target at any specific NVM products as they are still in
constant change, but our system is kept general enough for
quick adoption when NVM hardware becomes available. Ac-
curately modeling NVM latency, bandwidth and endurance
properties is promising future work.

ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers and our
shepherd Prof. Christoph Kirsch for their valuable feedback
and improvements to this paper. This work is partially sup-
ported by the National Natural Science Foundation of Chi-
na (61309004), National 863 Program (2013AA013202), Re-
search Fund for the Doctoral Program of Higher Education
of China (20130191120030), Chongqing cstc2012ggC40005
and cstc2013jcyjA40025, and Fundamental Research Funds
for the Central Universities (CDJZR14185501).

REFERENCES
[1] C.-H. Chen, P.-C. Hsiu, T.-W. Kuo, C.-L. Yang, and

C.-Y. M. Wang. Age-based PCM wear leveling with
nearly zero search cost. In Proceedings of DAC, pages
453–458, 2012.

[2] S. Cho and H. Lee. Flip-N-Write: A simple
deterministic technique to improve PRAM write
performance, energy and endurance. In Proceedings of
MICRO, pages 347–357, 2009.

[3] J. Condit, E. B. Nightingale, C. Frost, E. Ipek,
D. Burger, B. Lee, and D. Coetzee. Better I/O
through byte-addressable, persistent memory. In
Proceedings of SOSP, pages 133–146, 2009.

[4] S. Eilert, M. Leinwander, and G. Crisenza. Phase
change memory: A new memory enables new memory
usage models. In Proceedings of IMW, pages 1–2, 2009.

[5] C. Fu, M. Zhao, C. J. Xue, and A. Orailoglu.
Sleep-aware variable partitioning for energy-efficient
hybrid PRAM and DRAM main memory. In
Proceedings of ISLPED, pages 75–80, 2014.

[6] Google. Running android with low RAM. Android
Developers Documentation, 2014.

[7] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho,
Y. Higo, K. Yamane, H. Yamada, M. Shoji,
H. Hachino, C. Fukumoto, H. Nagao, and H. Kano. A
novel nonvolatile memory with spin torque transfer
magnetization switching: spin-RAM. In Proceedings of
IEDM, pages 459–462, 2005.

[8] Hynix. eMMC flash storage using 41nm technology.
Hynix Newsletter, 2009.

[9] S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won. I/O
stack optimization for smartphones. In Proceedings of
USENIX ATC, pages 309–320, 2013.

[10] L. Jiang, B. Zhao, Y. Zhang, J. Yang, and B. Childers.
Improving write operations in MLC phase change
memory. In Proceedings of HPCA, pages 1–10, 2012.

[11] A. Jog, A. Mishra, C. Xu, Y. Xie, V. Narayanan,
R. Iyer, and C. Das. Cache revive: Architecting
volatile STT-RAM caches for enhanced performance
in cmps. In Proceedings of DAC, pages 243–252, 2012.

[12] D. Jung, J. soo Kim, S. yeong Park, J. uk Kang, and
J. Lee. FASS: A flash-aware swap system. In
Proceedings of IWSSPS, 2005.

[13] H. Kim, N. Agrawal, and C. Ungureanu. Revisiting
storage for smartphones. ACM Transactions on
Storage, 8(4):1–25, 2012.

[14] H. Kim and D. Shin. Optimizing storage performance
of android smartphone. In Proceedings of ICUIMC,
pages 1–7, 2013.

[15] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger.
Architecting phase change memory as a scalable
DRAM alternative. In Proceedings of ISCA, pages
2–13, 2009.

[16] D. Liu, T. Wang, Y. Wang, Z. Qin, and Z. Shao.
PCM-FTL: A write-activity-aware NAND flash
memory management scheme for PCM-based
embedded systems. In Proceedings of RTSS, pages
357–366, 2011.

[17] W. Mauerer. Professional Linux Kernel Architecture.
Wrox Press Ltd., Birmingham, UK, 2008.

[18] K. Qiu, Q. Li, and C. J. Xue. Write mode aware loop
tiling for high performance low power volatile PCM.
In Proceedings of DAC, pages 1–6, 2014.

[19] M. K. Qureshi, J. Karidis, M. Franceschini,
V. Srinivasan, L. Lastras, and B. Abali. Enhancing
lifetime and security of PCM-based main memory
with Start-gap wear leveling. In Proceedings of
MICRO, pages 14–23, 2009.

[20] H. Saadeldeen, D. Franklin, G. Long, C. Hill,
A. Browne, D. Strukov, T. Sherwood, and F. T.
Chong. Memristors for neural branch prediction: A
case study in strict latency and write endurance
challenges. In Proceedings of CF, pages 1–10, 2013.

[21] M. Saxena and M. M. Swift. FlashVM: Revisiting the
virtual memory hierarchy. In Proceedings of HotOS,
pages 13–13, 2009.

[22] Z. Shao, Y. Liu, Y. Chen, and T. Li. Utilizing PCM
for energy optimization in embedded systems. In
Proceedings of ISVLSI, pages 398–403, 2012.

[23] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S.
Williams. The missing memristor found. Nature,
453(7191):80–83, 2008.

[24] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
Lightweight persistent memory. In Proceedings of
ASPLOS, pages 91–104, 2011.

[25] T. Wang, D. Liu, Y. Wang, and Z. Shao. FTL2: a
hybrid flash translation layer with logging for write
reduction in flash memory. In Proceedings of ACM
LCTES, pages 91–100, 2013.

[26] H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P.
Reifenberg, B. Rajendran, M. Asheghi, and K. E.
Goodson. Phase change memory. Proceedings of the
IEEE, 98(12):2201–2227, 2010.

[27] C. J. Xue, Y. Zhang, Y. Chen, G. Sun, J. J. Yang, and
H. Li. Emerging non-volatile memories: Opportunities
and challenges. In Proceedings of CODES+ISSS, pages
325–334, 2011.

[28] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee,
and B.-G. Yu. A low power phase-change random
access memory using a data-comparison write scheme.
In Proceedings of ISCAS, pages 3014–3017, 2007.

[29] K. Zhong, X. Zhu, T. Wang, D. Zhang, X. Luo,
D. Liu, W. Liu, and E. H.-M. Sha. DR. Swap:
Energy-efficient paging for smarthpones. In
Proceedings of ISLPED, pages 81–86, 2014.

[30] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable
and energy efficient main memory using phase change
memory technology. In Proceedings of ISCA, pages
14–23, 2009.

