
FLIC: Fast, Lightweight Checkpointing for Mobile 
Virtualization using NVRAM 

Kan Zhong, Duo Liu*, Liang Liang§, Linbo Long, Yi Lin, and Zili Shaot 

Key Lab. of Dependable Service Computing in Cyber Physical Society (Chongqing Univ.), 
Ministry of Education, China 

College of Computer Science, Chongqing University, China 
§College of Communication Engineering, Chongqing University, China 

tDepartment of Computing, The Hong Kong Polytechnic University, Hong Kong 

Abstract-Checkpointing is a key enabler of hibernation, live 
migration and fault-tolerance for virtual machines (VMs) in 
mobile devices. However, check pointing a VM is usually heavy­
weight: the VM's entire memory needs to be dumped to storage, 
which induces a significant amount of (slow) 110 operations, 
degrading system performance and user experience. In this 
paper, we propose FLIC, a fast and lightweight check pointing 
machinery for virtualized mobile devices by taking advantages of 
recent byte-addressable, non-volatile memory (NVRAM). Instead 
of saving the VM's entire memory to storage, we store its 
working set pages in NVRAM, avoiding accessing slow flash 
memory (compared to server-grade SSDs). To cope with the 
energy constraint of mobile systems, we further deduplicate VM 
snapshots, reducing the VM's image size and saving storage 
space. Experimental results based on an Exynos 5250 SoC show 
that our approach can effectively improve the performance of 
checkpointing in mobile virutalization and save energy. 

I. INTRODUCTION 

Mobile virtualization [1], [2], [3] enables tiny mobile de­
vices to run multiple virtual machines (VMs)-each running 
an isolated OS-on a single device, for benefits higher re­
source utilization, better security and so on [4], [5], [6], [7]. 
Though hardware extensions (e.g., the ARM virtualization ex­
tension) can significantly improve the performance of mobile 
virtualization, running multiple VMs at the same time still 
inevitably requires more resources, especially for memory and 
storage. In particular, checkpointing is one of the most heavy­
weight (and yet important) features that need a significant 
amount of hardware resources to run. Checkpointing a VM 
involves periodically writing the VM's entire memory pages 
to persistent storage (usually flash memory), and it is common 
for a checkpoint file to occupy hundreds of MBs or even 
GBs of storage space. Combined with the sub-optimal storage 
performance typically found in mobile devices [8], such long, 
bursty writes not only degrade checkpointing performance, but 
also slow down normal 110 requests issued at runtime. 

New byte-addressable, non-volatile memories (NVRAMs) 
such as phase change memory (PCM) [9], [10], [11], spin­
transfer torque RAM (STT-RAM) [12], [13] and mernris­
tor [14], [15] provide opportunities to optimize checkpointing 
in virtualized mobile systems. These NVRAM products blur 
the distinction between memory and storage: they are byte­
addressable like DRAM, but are also non-volatile like storage 
(e.g., flash memory). For example, compared to flash memory, 
PCM offers not only faster (near-DRAM) performance, but 

'Corresponding author: Duo Liu, College of Computer Science, Chongqing 
University, Chongqing, China. E-mail: liuduo@cqu.edu.cn. 

also larger erase cycles. Moreover, PCM exhibites much better 
read/write latency and endurance when compared to flash 
memory. Unlike DRAM, PCM does not need constant current 
to maintain data; it also has much higher density. Though 
mature NVRAM products are not yet on the market, they are 
expected to provide near-DRAM performance, high density, 
and good scalability [16]. 

Specifically, NVRAM's non-volatility, byte-addressablity 
and high performance make it an ideal candidate for optimiz­
ing checkpointing in mobile devices. Note that in this paper, 
we do not target at any specific NVRAM product to make 
our approach general enough. To reduce (expensive) writes to 
flash memory, we propose FLlC, a fast and lightweight check­
pointing scheme for mobile virtualization utilizing NVRAM's 
non-volatility and byte-addressability. FLIC stores frequently 
accessed VM pages (denoted as working set pages) on N­
VRAM, and only writes unfrequently accessed pages to flash 
memory. As a result, when restoring a VM from a checkpoint, 
FLIC can load working set pages from NVRAM quickly to 
resume normal VM operation, while load the remaining cold 
pages quietly in background from flash memory. To further 
reduce write activities to flash memory and the amount of 
data needed to read when resuming a VM. We propose an 
energy-aware deduplication mechanism to eliminate redundant 
data in VM snapshots, which also makes the background load 
operation easier, faster, and more energy friendly. 

We evaluate FLIC with a Sam sung Exynos 5250 SoC [17] 
running multiple Google Android VMs and applications. Ex­
perimental results show that FLIC can accurately identify 
working set pages, and effectively save energy through its 
energy-aware deduplication scheme. The energy consumption 
during checkpointing and size of checkpoints are reduced by 
,,-,50% and more than 20%, respectively. 

In summary, we make the following major contributions: 

• We discover that NVRAM is an ideal candidate for 
optimizing checkpointing in mobile virtualization, by 
storing frequently used (the "working set") memory pages 
in NVRAM, instead of flash memory. 

• We devise a simple yet effective VM working set identi­
fication scheme, so that frequently accessed working set 
pages can be stored in NVRAM to reduce I/O traffic 
during checkpointing and recovery. 

• We propose an energy-aware deduplication technique to 
reduce the size of VM snapshots, further reducing the 
write activities to flash memory. 

The rest of this paper is organized as follows. Section II 

978-3-9815370-7-9/DATEI6/ ©2016 EDAA 1562 



Host 
Userspace Guest Userspace 

��"'8 arne Office ews 

Guest Userspace 

�8B Store Maps··· Gmall 

Host 1 Guest OS (Le., Android) 1 1 Guest OS (Le., Android) 1 
Process 1 QEMU 1 1 QEMU 1 

Host 
Kernel KVM module 

Hardware 
CPU 1 1 Memory 1 1 LCD 1 '-1 ----:A

-
ud-::- io----,I ... 1 Keypad 1 

Fig. 1: Overview of a virtualized mobile system based on 
KVM/ARM [2]. QEMU simulates the VM's hardware system, 
and KVM provides the core virtualization services provided 
by the processor's virtualization extension. 

gives background and our motivation. In Section III, we de­
scribe the details of FLIC, including working set identification 
and checkpoint deduplication. We evaluate FLIC in Section IV 
and conclude in Section VI. 

II. BACKGROUND AND MOTIVATION 

In this section, we first introduce mobile virtualization. 
We then give the background on VM checkpointing and 
deduplication. Finally, we discuss our motivation. 

A. Mobile Virtualization 

Mobile virtualization enables multiple isolated OSes to run 
on a single device. It gives higher resource utilization, avail­
ability, better security and energy efficiency. A hypervisor is 
responsible for communicating with the underlying hardware, 
which is multiplexed to different guest VMs, so that multiple 
guests can share the same hardware, though none has exclusive 
access. As a result, multiple VMs could be created to run in 
full isolation without knowing the existence of each other. One 
could run a different or same mobile OS in each VM. Fig. 1 
shows the architecture of a virtualized mobile system based 
on ARM/KVM [2]. KVM provides access to the hardware 
virtualization extensions provided by the processor (e.g., ARM 
Cortex A-IS). QEMU runs in user space to emulate peripheral 
devices such as storage. As shown in the figure, two VMs 
share the same physical devices, and each OS has various apps 
running inside as if they were running in a native system. 

B. VM Checkpointing and Deduplication 

VM checkpointing refers to the process of saving the state of 
a VM to persistent storage, such as flash memory, so that it can 
be restored in its exact state later. A checkpoint of a running 
VM consists of the context of the virtual CPUs (VCPU) and 
peripheral devices connected to the VM (e.g., network adapters 
and storage), and a copy of all the memory pages allocated to 
the VM. Checkpointing a VM and then pausing it can free up 
resources and reduce power consumption. It also allows the 
user to generate a snapshot for the VM and migrate it to other 
devices or use that snapshot for fault-tolerance purposes. 

Data deduplicaiton aims at eliminating redundant data and 
only stores one unique instance. Redundant instances of data 
are replaced with a pointer to the unique copy. Deduplication 
improves storage utilization and reduces the amount of data 

w300,----------------, 
� Snapshots = 672MB ;200 
o g 100 

"0 Q) 
cr O�"""''''''''--''---''''-''''''''''''''-'' 

1K 2K 4K 8K 16K32K64K 
Chunk size 

(a) VM runs multimedia apps. 

w300,----------------, 
� Snapshots = 678MB ;200 
o g 100 

"0 Q) 
cr O�"""''''''''--''---''''-''''''''''''''-'' 

1K 2K 4K 8K 16K32K64K 
Chunk size 

(b) VM runs office apps. 

Fig. 2: Redundant data in VM snapshots. Data deduplication 
shows a high potential in reducing write activities to flash 
memory, thus saving storage space and accelerating recovery 
of checkpoints. 

that have to be transferred between two locations. In dedu­
plication, data are firstly split into non-overlapping chunks, 
and then chunks are checked for redundances by hashing and 
comparing them with existing values. In this paper, we adopt 
deduplication in checkpointing to eliminate redundant data. 

C. Motivation 

Mobile devices are getting increasingly powerful and de­
manding more and more memory to run various feature-rich 
applications [18]. Therefore, it is common for a VM to occupy 
hundreds of MBs or even GBs of memory to operate normally. 
Checkpointing such a VM will result in a large snapshot stored 
on flash memory, and the process will generate significant 
amount of 110 operations, which in turns slows down the I/O 
operations for running VMs due to the poor performance of 
flash storage in mobile devices [8]. 

Fortunately, we find that deduplication is an effective way to 
solve the excessive I/O problem. As shown in Fig. 2, duplicate 
data are common in VM snapshots. Depending on chunk sizes, 
as much as nearly 40% of the snapshot is redundant. This 
motivates us to reduce the write activities to flash memory 
through deduplication. Considering the energy constraint in 
mobile systems, in this work, an energy-aware deduplication 
mechanism is proposed to eliminate the redundant data in VM 
snapshots. 

III. MAKING CHECKP OINTING FAST AND LIGHTW EIGHT 

WITH NVRAM 

In this section, we first give an overview of FLIC. We 
then discuss the key techniques of FLIC: (1) working set 
identification and (2) energy-ware deduplication. 

A. Overview 

Fig. 3 shows an overview of FLIC. To identify the working 
set pages and eliminate redundant data in VM snapshot, 
two additional components: working set scanner and data 
deduplicator are added to the virtual machine monitor (VMM). 

Working set scanner is designed to inspect all the pages that 
have been allocated to the VM, and identify working set pages 
based on access patterns. The basic idea is to collect the most 
recent used pages upon a VM checkpointing request comes. 
To determine the working set pages, all VM memory pages 
are checked for being accessed or not in a time interval. Any 
page has been accessed in the interval belongs to the working 
set pages. 

Data deduplicator is a dedicated background thread and 
aims to remove duplicate data in the saved VM snapshot. 

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) IS63 



Data deduplicator 

NVRAM 

Fig. 3: Overview of FLIC. The working set scanner splits the 
target VM's memory pages into working and non-working set 
pages. The data deduplicator eliminates redundant data in the 
VM snapshots. 

Since deduplication is usually energy-consuming and CPU­
consuming, instead of using full hashing, partial hashing 
is adopted to reduce the hashing energy consumption. For 
saving energy, partial hashing computes a chunk's hash value 
using only a fraction of its data (i.e., sample data chunk 
at fixed positions with fixed length). As a comparison, full 
hashing computes a chunk's hash value using its entire data. 
For simplicity, we assume that the possibility of full hashing 
collision is negligible, and we do not discuss it in this work. 

B. Identifying working set pages 

Working set refers to the collection of the most recently 
used pages by a process or OS [19]. In VM checkpointing, 
we use working set to predict the pages that the VM touches 
during recovery. Therefore, we designed a working set scanner 
to collect working set pages based on the page types and page 
access pattern. 

In VM's memory content, pages can be simply classified in­
to page table pages and non-page table pages. VMM maintains 
page tables for the host memory management unit (MMU) to 
translate guest virtual address to host physical address during 
the VM execution. Therefore, all physical page frames of page 
tables are regarded as part of the working set pages. 

For non-page table pages, we use the flags in the page table 
entries (PTEs) to monitor page access patterns. If a page is 
accessed, we set the "accessed" bit in the corresponding PTE. 
To decide whether a page belongs to the working set, we 
use a two-phase scanning method: When the VMM receives 
a checkpointing request, a timer is set and the working set 
scanner will begin to scan page tables, and clear the access 
bit in each PTE. Upon timeout, the working set scanner scans 
all the PTEs in the page table again and check the access bit. 
Any page whose access bit is set now belongs to the working 
set. The accuracy of the working set depends on the timer and 
it is difficult to set the timeout interval: a too long and too 
short interval will lead to an overestimated and underestimated 
working set, respectively. As the non-working set pages are 
stored in the flash memory and loaded in background during 
VM recovery, the working set should contain as many pages 
which the VM will touch after recovery as possible. Therefore, 
the timer's time should depend on the recovery time of the 
non-working set, which is determined by the size of non­
working set and flash memory's read performance. 

Let Nworking_set denote the number of working set pages, 

Nnon_working_set be the number of the non-working set pages, 

Algorithm 111.1 Energy-aware data deduplication 

Input: snapshots: checkpointed VM snapshots; T H: battery threshold. 
Output: vector: redundant vector, stores deduplication information. 

1: ck_size +- 4096 bytes. / / 4KB by default 
2: vector +- 0, h_table +- 0, ck_array +- 0. 
3: battery_level +- check for battery level. 
4: if batter level < T H then 
5: ck_si-;e +- 8092 bytes. 
6: end if 
7: ck_array +- split snapshots with ck_size. 
8: for i +- 1 to length(ck_num) do 
9: parCval +- partial-hash(ck_array[i]). 

10: if:J k, h_table[k].parCval = parCval then 
II: full_val +- full-hash(ck_array[i]). 
12: if h_table[k].fulCval = null then 
13: h_table[k].fulCval +- full-hash(ck_array[k]). 
14: end if 
15: if h_table[k].fulCval = full_val then 
16: vector[i] +- k. 
17: else 
18: insert (i, parCval, full_val) into h_table. 
19: vector[i] +- i. 
20: end if 
21: else 
22: insert (i, parCval, null) into h_table. 
23: vector[i] +- i. 
24: end if 
25: end for 
26: return vector 

Ntotal as the total number of checkpointed VM pages, and 
Ttimer denotes the timer's timeout interval. We can then obtain 
the following equation: { Nworking_set � Nnon_working_set = Ntotal 

Nworking_set - a x Ttimer 
'T' . - /3 

Nnon_working_set 
-' ttmer - x --=-----'=--

r 

(1) 

In equation (1), r denotes the read performance of flash 
memory (r pages/second). a and /3 are coefficients. a repre­
sents the average number of pages the VM touches per second, 
which is regard as the VM memory access pattern. /3 is a 
tunable value that gives the ratio between the timeout interval 
and the non-working set's recovery time. We tune the value of 
/3 to strike a balance between working set size and accuracy. 
After knowing the values of a and /3, we can figure out Ttimer 
according to equation (1). 

Based on the locality principle, when the scanner times 
out, we checkpoint the running VM immediately, including 
the CPU and devices states, as well as the entire memory. To 
represent the working set, working set bitmaps are used to keep 
track of the working set pages. After eliminating redundant 
data, pages are saved to NVRAM and flash memory according 
to the bitmaps. 

C. Energy-aware deduplication 

We implement data deduplicator considering the constraint 
resources in mobile systems. Since deduplication is usually 
heavyweight, which not only degrades performance but also 
consumes significant amount of energy. To solve this problem, 
we design an energy-aware deduplication algorithm to remove 
duplicate data in the saved VM snapshot. 

To reduce energy consumption, we first use partial hashing 
instead of full hashing when comparing chunk values. In 
partial hashing, a part of the chunk is used to compute the 
hash value. If two chunks have the same partial hash value, 

1564 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 



TABLE I: Google Android experimental workloads 

then the full hash values of the two chunks are computed for 
comparison. By comparing partial hash values, we reduce the 
number of full hash computing, thus saving system energy. 
To further reduce energy consumption, before deduplication 
starts, we first check the system's remaining energy. If the 
remaining energy is enough (i.e., battery level is higher than a 
pre-defined threshold), we use the page size (i.e., 4KB) as the 
chunks size for deduplication; otherwise, a larger chunk size 
(e.g., 8KB) will be used. To reconstruct memory pages from 
deduplicated data, we use a redundant vector as the metadata 
to re-reference duplicate chunks. 

Algorithm IlL 1 gives the detailed description of our energy­
aware deduplication method. The remaining battery level is 
first checked to determine chunk size (lines 5 - 10). We then 
split the VM snapshot into chunks with the determined chunk 
size (line 11). For each chunk, we first compute its partial hash 
value. If the hash table already contains a chunk with the same 
partial hash value (lines 13-14), then the full hash values of 
the two chunks are computed and compared to further confirm 
they are duplicate chunks (lines 15-21). If the hash table does 
not contain any chunk with the same partial hash value or 
their full hash values do not match, we insert a new entry into 
the hash table (lines 23-27). Note that the redundant vector is 
also updated during this process, if vector[i] = k and i i- k, 
which means the ith chunk and the kth chunk are the same, 
they are duplicate chunks. After deduplication, FUC saves 
working and non-working set pages in NVRAM and flash 
memory according to the working set bitmaps, respectively. 

IV. EVALUATION 

We evaluate FUC using a Samsung Exynos 5250 SoC that 
supports hardware-assisted virtualization. Fig. 4 shows the top 
view of our experimental platform, the Arndale development 
board. The board is equipped with an ARM dual-core proces­
sor, which is based on the ARMv7 architecture and was the 
first ARM processor with hardware virtualization support. The 
processor is clocked at 1.7GHz, and contains 32KB instruction 
cache and 32KB data cache. The board features 2GB DRAM 
and 4GB internal flash memory. We use DRAM to emulate 
NVRAM. We also add a 64GB SD card as secondary storage 
to install the host OS and store checkpoints. 

We use Ubuntu 12.04 with Linux kernel 3.8 as the host 
OS, and Google Android as guest OS. The kernel is patched 
with KVM-on-ARM to utilize the virtualization extensions 
provided by the processor. We use real Android applications 
to evaluate the effectiveness of FUC. TABLE I lists the six 
categories of applications in our experiments. Currently, we 
only run one VM instance at once and each VM is allocated 
with 512MB of main memory. 

A. Working set identification 

To evaluate the accuracy of FUC's working set identifica­
tion, we run all the VMs listed in TABLE L The major metric 

-
Guest Userspace 

� · 1_, 

I I;'� " . �� . . . � iPqwer " U$Bports '0" ipB 
Android 4.4.2 

QEMU 

KVM 

Host kernel 

Ubuntu 12.04 

suPp'Y� .. 

D
" .... ,' Jl. eMMC' I·· ,, ' '. " , �r""�1IiXY -;;os:"'; " ,. . .. ���� lL.!.I , 5250 .... , .... 

2GB'-"� · i ';', " ,  
: � OBAM'1' 'J ' " . - -, ;;: �!::!. . .. __ � .  ' , , _ a,. 
; 64GB. 

HOM, ' D 'SO card 

Fig. 4: Software configuration in our experiments (left) and the 
development board (right), which is equipped with a 1.7GHz 
ARM Cortex-Al5 dual-core processor with virtualization ex­
tensions and 2GB DRAM. 

TABLE II: Working set identification configurations. 

is the hit rate of working set pages during VM recovery, which 
can be defined as follows: 

Let Swr denotes the set of the working set pages, Srt 
denotes the set of pages the VM touches during recovery, and 
Nrt denotes the number of pages in Srt. For each page i in 
Srt, we define h( i) as: 

h(i) = { � if i E Swr; 
if i ¢:. Swr. 

Therefore, the working set hit rate can be expressed as: 

"Nrt h( ') 
hit rate = L."i- l Z 

- Nrt 

(2) 

(3) 

In our experiments, a is determined based on VM type. 
(3 defines the ratios between the timeout interval and the 
non-working set recovery time. To obtain a higher hit rate, 
the timeout interval must be longer than the non-working set 
recovery time. Therefore, to show the impact of (3 on hit rate, 
we try different values of (3: 2, 3, and 4; the timeout interval 
is set to 2 times, 3 times, and 4 times longer than the non­
working set recovery time, respectively. In the experiments, 
we notice that for each VM, there is a small amount of 
available memory left after launching applications (usually less 
than 3MB). Therefore, in equation (1), we set the Ntotal to 
the VM's total number of memory pages. Based on the read 
performance of the flash memory product we use, which is up 
to 80MB/s, we set r to 20480 pages/second. Then equation (1) 
can be solved to obtain the timeout interval Ttimen the 
estimated working set size Nworking_set and non-working 
set size Nnon_working_set. TABLE II lists the experimental 
configurations for each VM. We use these configurations to 
run experiments and collect hit rate results. 

TABLE III compares the size of estimated working set based 
on equation (1) and the real working set size collected offline. 
Since a larger (3 leads to a long timeout interval, more pages 
can be collected before the timeout. Therefore, as shown in the 
table, the size of the working set keeps growing as (3 increases. 

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1565 



TABLE III: Comparison between estimated working set size and real working set size collected offline. 

VM name St. sIze ea sIze St. sIze 

As a represents the memory access pattern, different different 
a values lead to different working set size. For VMs with 
the same a, their working set size are close to each other. 
For example, the real working set sizes of multimedia-VM 
and social-VM are respectively 65.91MB and 63. 50MB when 
f3 = 2, which are very close to each other. As shown in the 
table, the average size difference between the estimated and 
real working set sizes is no more than 10% on average. For 
multimedia-VM, the average difference is � 2%, showing that 
equation (1) can set the timeout interval accurately. 

Fig. 5 shows the working set hit rate based on equation (3). 
As the working set pages are first recovered to resume the 
running of a VM, a high working set hit rate is quite important 
to improve recovery performance. As shown in the figure, a 
higher f3 can achieve higher hit rate. When f3 = 4, the hit 
rate is higher than 95% on average. The main reason behind 
this is that a larger f3 leads to a long timeout interval, and 
finally results in a larger working set. Therefore, based on 
locality, pages the VM accessed during the recovery will have 
a higher chance to be part of the working set. However, a larger 
working set can occupy more NVRAM space. According to 
TABLE III and Fig. 5, we find that setting f3 to 3 can strike 
a balance between working set size and hit rate, in which the 
size of the working set is moderate while we still maintain a 
high hit rate. 

B. Energy-aware data deduplication 

Energy consumption is one of the major main concerns 
for deduplication in mobile devices. The hash function is the 
key component and also is the most energy-intensive part of 
deduplication. As the energy consumed by the hash function 
is proportional to the input data size, we compute the energy 
reductions of our deduplication scheme according to the total 
size of the hashed data. Fig. 6 shows the energy reductions 
when we compare our hashing method to full hashing. Note 
that "L" in the figure denotes the length of the samples in byte 
for partial hashing. As shown in the figure, our approach can 
reduce the energy consumption of the hashing by around 50% 
with 4KB chunks. Since the size of the data for computing 
the fingerprint is reduced when size of the data chunk grows, 
our approach can reduce more energy. When chunk size is set 
to 8KB, we can reduce more than 75% energy consumption. 
Therefore, when the system's energy is not sufficient, we 
suggest to use a larger chunk size to save energy. 

We also observe that sample size in partial hashing impacts 
energy savings. For 4KB chunks, as shown in Fig. 6(a), using 
a sample length of 64 or 128 bytes can achieve the maximum 
energy saving. For 8KB chunks, as shown in Fig. 6(b), the 
maximum energy saving comes with a 128 or 256 bytes 
samples. To show the trends more clearly, we use the browser­
VM as an example and plot the energy reduction trends in 
Fig. 7 when using different sample sizes. As shown in the 

ea sIze St. sIze ea sIze 

Fig. 5: Working set hit rate under different f3 values. 

(a) Chunk size is 4KB 

(b) Chunk size is 8KB 

Fig. 6: Percentage of reduced energy using energy-aware 
hashing of FLIC with different sample lengths and chunk sizes, 
compared to full hashing. 

figure, when the sample sizes are respectively 128 and 256 
bytes, using 4KB and 8KB chunks can achieve the maximum 
energy reduction. 

TABLE IV lists the deduplication ratio and duplicate size 
for each VM with different chunk sizes. As shown in the 
table, with 4KB chunks, the VM snapshots size can be reduced 
by around 20.9%-28.3%. Which means a significant amount 
of write activities reduction to flash memory. However, with 
8KB chunks, deduplication becomes less effective, reducing 
snapshot size by around 4.9%-7.6%. This is mainly because 
4KB is the size of a physical page in our hardware and can 
provide proper size to split the VM snapshots. We therefore 
recommend using 4KB chunks to eliminate redundancy. AL­
though 8KB chunks can only eliminate a small amount of 
duplicate pages, it consumes much less energy, which can be 
used when the system is running out of energy. 

V. RELATED WORK 

Various studies have been conducted to enable virtualization 
in mobile devices. For example, KVM has been ported to 
the ARM architecture to run unmodified OSes [2], [20]. To 
optimize checkpointing/recovery of VM in virtualized mobile 
systems, Park et al. [21] proposed a fast and space-efficient 
VM checkpointing technique. Zhang et al. [22] proposed to 
accelerate the recovery process using working set estimation. 

1566 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 



Sample size = 128 
000000 00000000 0000 

�100 . <f'. ,_Sample size - 256 
� 75 �P.oooo �c 000 
§ 50f-c 000000 t5 25 

000000 :::l 

4 1024 2048 3072 al OL.lL-�---'--�-L-�--' a:: 4 2048 4096 5632 
Sample length (bytes) Sample length (bytes) 

(a) Chunk size = 4KB (b) Chunk size = 8KB 

Fig. 7: The trends of hash energy reduction with different 
sample lengths. 

TABLE IV: Deduplication ratio and duplicate size for each 
VM with different chunks sizes. 

(hunk size - 4KB (hunk size - 8KB I VM name ueoup I call on uup Icale ueoup I call on uup Icale 
ralio (%) size (MB) ralio (%) size (MB) 

Browser-VM 21.'JU 1U7 7.62 j'J 
Social-VM 28.32 145 7.03 36 

Multimedia-VM 25.39 130 7.03 36 
Shopping-VM 21.29 109 4.88 25 

News-VM 22.27 114 6.64 34 
Mixed-VM 21.48 110 6.45 33 

Other eXIstmg optImIzation methods such as unnecessary 
memory exclusion aim to reduce the checkpointed memory 
size. In this paper, we optimize the checkpointing of VM by 
storing working set pages in NVRAM, instead of dumping 
the VM's entire memory pages to flash memory. Moreover, 
we propose an energy-ware data deduplication scheme is to 
reduce checkpoint size. 

Other related work lies in area of working set estimation. 
The working set is defined as the collection of the most 
recently used pages [19] for the OS or some process. The 
majority of related work aimed at identifying working set 
memory pages [23], [24], [25]. Similar to the working set 
estimator proposed in [21], working set identification scheme 
of FLIC tries to predict the collection of pages which the VM 
accessed during a specific period of time. However, different 
from [21], FLIC adopts two-phase scanning, and the time 
elapsed between the two scans is configurable. To achieve 
accurate estimations, both access pattern and non-working set 
recovery time need to be taken into consideration to determine 
the timeout interval. 

VI. CONCLUSION 

In this paper, we have proposed FLIC, a fast and lightweight 
checkpointing scheme for mobile virtualization system using 
NVRAM based main memory. Instead of writing the whole 
VM memory to flash memory, FLIC saves the working in 
fast, byte-addressable NVRAM. Experimental results show 
that FLIC can achieve a very high accuracy of more than 
97%. To further reduce write activities to flash memory, we 
have proposed an energy-aware data deduplication scheme for 
FLIC to eliminate redundant data in VM snapshots. Instead 
of hashing full data chunks, we use partial hashing to reduce 
the energy consumption of hashing. In partial hashing, we 
sample the data chunk at fixed positions with fixed length to 
generate partial hash values. Experimental results show that 
our approach is able to reduce the energy consumption of 
hashing by around 50% and 80% for 4KB and 8KB chunks 
with 128 byte and 256 byte samples, respectively. 

ACKNOWLEDGMENTS 

The work described in this paper is partially supported 
by the grants from the National Natural Science Founda­
tion of China (Project 61272103, 61309004, and 61373049), 
National 863 Program 20l5AA015304, Research Fund for 
the Doctoral Program of Higher Education of China 
(20130191120030), Chongqing High-Tech Research Program 
cstc2013jcyjA40025, Fundamental Research Funds for the 
Central Universities (CDJZRI4185501, 0214005207005), Re­
search Grants Council of the Hong Kong Special Ad­
ministrative Region, China (GRF 152138/14E and GRF 
152223151l5E), and the Hong Kong Polytechnic University 
(4-ZZD7, G-YK24, G-YMIO and G-YN36). 

REFERENCES 

[I] K. Barr, P. Bungale, S. Deasy, Y. Gyuris, P. Hung, C. Newell, H. Tuch, 
and B. Zoppis, "The VMware mobile virtualization platform: is that a 
hypervisor in your pocket?" ACM SIGOPS Operating Systems Review, 
vol. 44, pp. 124-135,2010. 

[2] c. Dati and J. Nieh, "KVM/ARM: the design and implementation of 
the linux ARM hypervisor," in ASPLOS, 2014, pp. 333-348. 

[3] c. Dati, J. Andrus, A. Van't Hof, O. Laadan, and J. Nieh, "The 
design, implementation, and evaluation of cells: A virtual smartphone 
architecture," ACM Trans. on TOCS, vol. 30, no. 3, pp. 9: 1-9:31,2012. 

[4] L. Long, D. Liu, X. Zhu, K. Zhong, Z. Shao, and E.-M. Sha, "Balloon­
fish: Utilizing morphable resistive memory in mobile virtualization," in 
ASP-DAC, 2015, pp. 322-327. 

[5] W. Zhao and Z. Wang, "Dynamic memory balancing for virtual ma­
chines;' in VEE, 2009, pp. 21-30. 

[6] Y.-c. Lee and c.-w. Hsueh, "An optimized page translation for mobile 
virtualization," in DAC, 2013, pp. 85: 1-85:6. 

[7] M. Pearce, S. Zeadally, and R. Hunt, "Virtualization: Issues, security 
threats, and solutions;' ACM Computing Surveys, vol. 45, no. 2, pp. 
17: 1-17:39, 2013. 

[8] H. Kim, N. Agrawal, and C. Ungureanu, "Revisiting storage for smart­
phones," ACM Trans. on Storage, vol. 8, no. 4, pp. 14: 1-14:25, 2012. 

[9] H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Ra­
jendran, M. Asheghi, and K. E. Goodson, "Phase change memory," 
Proce edings of the IEEE, vol. 98, no. 12, pp. 2201-2227, 2010. 

[10] H. Khouzani, C. Yang, and J. Hu, "Improving performance and lifetime 
of dram-pcm hybrid main memory through a proactive page allocation 
strategy," in ASP-DAC, 2015, pp. 508-513. 

[II] D. Liu, T. Wang, Y. Wang, Z. Shao, Q. Zhuge, and E.-M. Sha, 
"Application-specific wear leveling for extending lifetime of phase 
change memory in embedded systems;' IEEE TCAD, vol. 33, pp. 1450-
1462, 2014. 

[12] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Ya­
mane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, 
and H. Kano, "A novel nonvolatile memory with spin torque transfer 
magnetization switching: spin-RAM," in IEDM, 2005, pp. 459-462. 

[13] C. J. Xue, Y. Zhang, Y. Chen, G. Sun, J. J. Yang, and H. Li, "Emerging 
non-volatile memories: Opportunities and challenges," in CODES+ISSS, 
2011, pp. 325-334. 

[14] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The 
missing memristor found," Nature, 2008. 

[15] B. Li, Y. Wang, Y. Wang, Y. Chen, and H. Yang, "Training itself: 
Mixed-signal training acceleration for memristor-based neural network;' 
in ASP-DAC, 2014, pp. 361-366. 

[16] S. Li, A. Li, Y. Zhe, Y. Liu, P. Li, G. Sun, Y. Wang, H. Yang, and Y. Xie, 
"Leveraging emerging nonvolatile memory in high-level synthesis with 
loop transformations," in ISLPED, 2015, pp. 61-{56. 

[17] "Arndale board Exynos 5250," http://www.arndaleboard.org/wikilindex. 
php/Main]age, 2014. 

[18] K. Zhong, T. Wang, X. Zhu, L. Long, D. Liu, W. Liu, Z. Shao, and 
E. H.-M. Sha, "Building high-performance smartphones via non-volatile 
memory: The swap approach," in EMSOFT, 2014, pp. 30:1-30:10. 

[19] P. J. Denning, "The working set model for program behavior;' Commu­
nications of the ACM, vol. II, no. 5, pp. 323-333, 1968. 

[20] c. Dati and J. Nieh, "KVM for ARM," in Linux Symposium, 2010. 
[21] E. Park, B. Egger, and J. Lee, "Fast and space-efficient virtual machine 

checkpointing:' in VEE, 2011, pp. 75-86. 
[22] I. Zhang, A. Garthwaite, Y. Baskakov, and K. C. Barr, "Fast restore of 

checkpointed memory using working set estimation;' in VEE, 2011, pp. 
87-98. 

[23] S. Bansal and D. S. Modha, "CAR: Clock with Adaptive Replacement," 
in FAST, 2004, pp. 187-200. 

[24] S. Jiang and X. Zhang, "LIRS: An Efficient Low Inter-reference Recency 
Set Replacement Policy to Improve Buffer Cache Performance," in 
SIGMETRICS, 2002, pp. 31-42. 

[25] S. Jiang, F. Chen, and X. Zhang, "CLOCK-Pro: An Effective Improve­
ment of the CLOCK Replacement;' in USENIX ATC, 2005, pp. 35-35. 

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1567 


