nCode: Limiting Harmful Writes to Emerging
Mobile NVRAM through Code Swapping

Kan Zhong, Duo Liu*, Linbo Long, Xiao Zhu, Weichen Liu, Qingfeng Zhuge, Edwin H.-M. Sha

Key Lab. of Dependable Service Computing in Cyber Physical Society (Chongqing Univ.),
Ministry of Education, China
College of Computer Science, Chongqing University, Chongqing, China
{kzhong1991, liuduo} @cqu.edu.cn

Abstract— Mobile applications are becoming more and
more powerful but also dependent on large main memories,
which consume a large portion of system energy. Swapping to
byte-addressable, non-volatile memory (NVRAM) is a promising
solution to this problem. However, most NVRAMs have limited
write endurance. To make it practical, the design of an NVRAM
based swapping system must also consider endurance. In this
paper, we target at prolonging the lifetime of NVRAM based
swap area in mobile devices. Different from traditional wisdom,
such as wear leveling and hot/cold data identification, we propose
to build a system called nCode, which exploits the fact that code
pages are easy to identify, read-only, and therefore a perfect
candidate for swapping. Utilizing NVRAM’s byte-addressability,
we support execute-in-place (XIP) of the code pages in the swap
area, without copying them back to DRAM based main memory.
Experimental results based on the Google Nexus 5 smartphone
show that nCode can effectively prolong the lifetime of NVRAM
under various workloads.

I. INTRODUCTION

Mobile devices like smartphones are always short for main
memory as applications get more and more powerful and
resource demanding. Having larger main memory, which is
DRAM based, is effective but also drains the limited battery
faster. Swapping is an effective way to extend memory ca-
pacity without adding more DRAM for big servers. However,
it has been disabled in most smartphones and other mobile
systems due to the sub-optimal random access performance of
flash memory [1]. To still satisfy memory allocation requests
under this setting when the system is under memory pressure,
existing running applications have to be constantly terminat-
ed. This way avoids the performance degradation caused by
swapping to flash, however, it makes application switch and
load time longer, and worsens user experience.

With emerging byte-addressable non-volatile memory (N-
VRAM) such as phase change memory (PCM) [2], spin-
transfer torque RAM (STT-RAM) [3] and memristor [4],
swapping is no more a deal-breaker for smartphone perfor-
mance and user experience. Swapping to NVRAM [5] avoids
excessive application terminations and can preserve the most
performance as NVRAM is orders of magnitude faster than
flash. Since NVRAM is byte-addressable, the heavy storage
layer which traditional swapping is built on can be replaced

*Corresponding author: Duo Liu, College of Computer Science, Chongqing
University, Chongqing, China. E-mail: liuduo@cqu.edu.cn.

by a lightweight memory layer, further improving performance
and simplifying system design. Re-adopting swapping using
NVRAM also significantly reduces energy consumption of
smartphones as NVRAM eliminates a considerable portion of
the system’s standby power [6].

Despite the benefits brought by NVRAM based swapping, a
must-solve problem that is similar to swapping to flash is the
endurance of NVRAM—most NVRAMs have limited write
endurance (“write-limited”). For example, the way PCM works
determines a cell can only be re-written for 103-10° times
before worn-out. To have a practical NVRAM based swapping
system in smartphones, the endurance of NVRAM must be
prolonged. Any writes to NVRAM that are not necessary are
considered harmful. When swapping to NVRAM, one must
avoid as many harmful writes as possible and proactively
reduce writes on NVRAM.

The conventional wisdom is hot/cold data identifica-
tion. Identifying “cold” data—those that are not frequently
modified—is both lightweight and proactive as in this way, we
can control which data can be placed in NVRAM and DRAM
main memory. Since cold data are not accessed frequently,
after being swapped out, they will not be swapped in in a
short time. Therefore, swapping out cold data can preserve
the lifetime of NVRAM. After cold data are identified, they
are given a higher priority to be swapped out to NVRAM.
With application-specific knowledge, hot and cold data can
be identified and treated differently in an almost perfect
manner [7]. But this is a non-trivial process for smartphone
applications: different applications have vastly different data
access patterns. Obtaining proper hot/cold data identification
for smartphones without application-specific information and
make it adaptive to different workloads are difficult, if not
impossible. It also brings significant run-time overheads to
detect and adapt to data access patterns.

Though identifying data access patterns and adapting appli-
cations to them are difficult, identifying code pages is very
straightforward—they are the executables stored in smart-
phone storage. Moreover, code pages are read-only, making
them a perfect candidate for swapping to write-limited N-
VRAM. With these insights, we propose to build a system
called “nCode” to reduce harmful writes on NVRAM based
swap space in smartphones. nCode gives code pages higher
priorities when finding swapping candidates. In particular,
nCode utilizes the unique direct read ability provided by
NVRAM based swapping [5], [6] to allow execute-in-place
of code pages on the swap space. Since NVRAM is byte-

addressable, all the swapped out pages can be accessed directly
through load and store instructions. Consequently, one
does not have to swap in pages for read requests. Therefore,
an NVRAM based swapping system can simply set up page
table mappings from virtual addresses to physical NVRAM
addresses to allow direct read. Code pages are read and
executed directly in the swap area, without being swapped
back to main memory.

We have implemented nCode in Google Android and
its Linux kernel. To evaluate its effectiveness, we conduct
experiments using various real applications on a Nexus 5
smartphone. Experimental results show that nCode can reduce
significant number of writes to NVRAM when compared to
traditional flash based and NVRAM based swapping systems,
furthering improving the endurance of NVRAM.

We make the following contributions:

e We propose nCode, a discriminative NVRAM based
swapping system that prioritizes the swapping of read-
only code pages, to reduce harmful writes to write-limited
NVRAM.

« Utilizing the byte-addressability of NVRAM, we provide
XIP support of code pages in the NVRAM swap area,
without copying the code pages back to DRAM.

¢ We implement nCode into Android’s Linux kernel, and
evaluate nCode with real applications based on Google
Nexus 5.

The remainder of this paper is organized as follows.
Section II outlines background on swapping and emerging
NVRAM in mobile devices. Section III details the design
of nCode. Evaluation results are presented and analyzed in
Section IV. Finally, we discuss related work and conclude in
Sections V and VI, respectively.

II. BACKGROUND

In this section, we first introduce NVRAM and its endurance
problem, and then give the background on swapping in mobile
devices, especially in smartphones.

A. NVRAM

Byte-addressable non-volatile memory (NVRAM) such as
PCM [2], STT-RAM [3] and memristor [4], are future can-
didates for replacing DRAM (as main memory), SRAM (as
on-chip cache), and even flash (as storage) because of its nice
features such as low power consumption, high density and
non-volatility [8], [9]. Compared to DRAM, NVRAM does
not need constant voltage to maintain data because it keeps
data by changing the physical state of its underlying material,
such as resistance level. PCM is one of the most promising
candidates. It uses the state changing between amorphous and
crystalline of phase-change materials (e.g., GST) to record
logical zeros and ones. Therefore, as shown in TABLE I,
PCM exhibits much lower power consumption and similar read
latency but longer write latency when compared to DRAM.
More importantly, it is write-limited, i.e., each PCM cell can
only be programmed for a limited 108-10° times [10], [11],
while the number for DRAM is at least 10'°. Besides PCM,
other NVRAMs also have similar limited write endurance.

Two major ways to overcome the endurance problem of
NVRAM are wear leveling and write reduction. Wear leveling
evenly distributes the writes over all memory cells to prevent

TABLE I: Comparison of PCM and DRAM [19], [20].

[Attributes [DRAM | PCM |
Read Latency ~50ns 50 - 100ns
Write Latency ~20 - 50ns ~1lus
Power ~W/GB 100—500mW/die
Idle power ~W/GB <0.1W
Endurance (write cycles) 10T 108 — 107

some cells wearing out faster [7], [12], [13], [14]. Write re-
duction tries reduce the number of writes or the number of bit
flips to memory cells [15], [16]. Alone with PCM, memristor is
another promising NVRAM and has the potential of providing
at least DRAM performance. Recently, many researches are
based on memristor, thus as memristor based approximation
computing [17] and artificial neural network [18]. In this paper,
we don’t target at any specific NVRAM products, instead, we
focus on the software aspects as nCode works on the OS level.

B. Swapping

Main memory has never been enough for smartphone ap-
plications, hence the trend of having big main memories in
tiny smartphones. However, more memory also means more
energy consumption. A natural solution to this problem is
swapping, which is useful for extending memory capacity
without adding more DRAM. When the system is under
memory pressure, a page frame reclaim routine will write
inactive pages to the swap area. In smartphones, flash memory
is usually used as the swap area due to their low cost and
high capacity. However, swapping memory pages in and out
of the flash based swap area must go through all the I/O stack.
Therefore, the performance of swapping is mainly decided by
the performance of the underlying storage medium.

Due to the sub-optimal performance of flash memory,
swapping is usually disabled in smartphones. A recent solution
is using NVRAM as the swap area [5]. Since NVRAM has
near-DRAM performance, swapping will not degrade system
performance. But to make this practical, a must-solve problem
is the endurance of NVRAM. A key component is the page
frame reclamation algorithm (PFRA), which is used to select
victim pages which needs to be swapped out. Usually two
page lists are maintained: the active list and inactive list.
Anonymous pages in the inactive list are scanned and selected
as candidates to be swapped out. It is well-known that without
application semantics, it is difficult for the OS to identify
whether a page is active or not. However, we found that page
type is usually available to the OS, and it is easy for the OS
to differentiate code and data pages. Therefore, we argue that
a better solution is to swap out code pages to the swap area
and execute the code in-place, without copying them back to
main memory. We illustrate the design and evaluation of this
architecture in the rest of this paper.

III. nCODE DESIGN

In this section, we first give an overview of nCode. We
then discuss the key techniques behind nCode: (1) identifying
code pages in the process address space at runtime, and (2)
providing support for XIP of code pages in the swap area.

A. Overview

We illustrates the system architecture of nCode in Fig. 1.
In an NVRAM based swapping system, the swap area is
directly attached to the memory bus and accessed through

Swap out through

select code page memory interface
v

DRAM NVRAM |

i !

Memory Bus

Fig. 1: System architecture. Swap area is backed by NVRAM
and memory interface is used to swap out victim code pages
selected by nCode.

load and store instructions, instead of block I/O. Different
types of pages are swapped out of and into the swap area.
They have very diverse access characteristics. In particular,
code pages contain program binary code or mapped shared
libraries. Different from normal data pages that can be read
and written, code pages are usually read-only and marked as
executable. Exploiting this property, when the system is
under memory pressure, i.e., the amount of free memory is
below a predefined threshold, nCode will start to scan the
virtual address space of all running processes and select their
code pages as candidates to be swapped out. When these pages
are accessed again, we execute the code in-place on the swap
area without copying these code pages back to main memory
by utilizing the byte-addressability of NVRAM.

B. Identifying Code Pages

The identification of code pages (i.e., selection of code
pages as swapping candidates) is accomplished through the
page frame reclamation algorithm (PFRA), which is invoked
when the system is under memory pressure, e.g., when the
amount of free memory is below a predefined threshold.
A traditional PFRA maintains an active and inactive list
during normal processing. When the system is under memory
pressure, pages in the inactive list are selected to be swapped
out. In nCode, instead of selecting inactive pages, we select
code pages as swapping candidates, utilizing the information
provided by various data structures that maintain process states
at runtime. After code pages are migrated to the NVRAM
based swap area, they are mapped to the processes’ virtual
address space via page tables to allow direct read and XIP [6].
Swapping in upon read is therefore avoid. The code pages in
NVRAM are freed when the process referencing them exit.

To obtain candidate code pages, we first select victim
processes which owns code pages. In particular, our imple-
mentation reuses Android’s low memory killer (LMK), which
tends to choose a low priority process with high memory
usage. The LMK was originally for terminating applications to
make room for incoming memory allocation requests. Instead
of maintaining active and inactive lists of pages found in
traditional PFRAs, nCode utilizes LMK’s victim selection
mechanism to determine which process’ code pages to swap
out. After a process is selected, we scan its virtual address
space to find out all code pages (i.e., those that are marked
executable). We then migrate all the resulted pages to the
NVRAM swap area.

Algorithm III.1 shows the details of migrate code pages
of a certain process to the NVRAM swap area. Usually the
memory space belonging to a process consists of multiple

Algorithm IIL.1 MigrateCodePages(proc)

Input: proc: the process selected to be migrated.
Output: null

1: for each virtual memory range v in proc do

2: if v is executable then

3 for each page in v do

4 newpage < allocate new page in NVRAM.

5 update all the PTEs for page via reverse mapping.
6: memcpy(newpage, page).

7 free(page).

8 end for

9: end if

10: end for

Process virtual

DRAM
address space
(2) Remove |
Page table Mapping (1) Migrate
code page
PTE (3) Setup new
mapping NVRAM

Fig. 2: XIP of code pages. (1) The code page is swapped
out from DRAM to NVRAM; (2) Remove the mapping for
the code pages and free them; (3) Set up new page table
mappings for the code pages in NVRAM, to allow the code
to be executed in-place on NVRAM.

virtual memory ranges, which are organized using a linked
list. Each range has multiple physical page frames mapped
through page tables. Each range data structure has several state
flags to denote its purpose, such as read and executable,
indicating that the physical pages are used to store shared
libraries (e.g., /etc/1d. so) or the text section (i.e., the pro-
cess’ code). Our algorithm scans the given process’ memory
ranges and select the executable ranges. For each page in the
selected ranges, we allocate a new page in NVRAM (line 4),
redirect the virtual addresses that were pointing to the DRAM
page to the NVRAM page (line 5), and copy the contents to
it (line 6). The DRAM page is then freed to the OS memory
manager for future memory allocations (line 7).

C. XIP of Code Pages

Utilizing the byte-addressability of NVRAM, nCode pro-
vides XIP of code pages. Code pages in NVRAM are not
swapped in upon read access. In a naive implementation of
NVRAM based swap space, victim pages will be copied
to swap area first and then copied back to main memory
when these pages are accessed again. The kernel handles
such requests through the page fault handler, which fetches
the requested pages from swap area, sets up new page table
mappings and then returns to the user process. The whole
operation will involve at least one page read in the swap area,
one memory page write and one page table entry (PTE) write.
The whole swap-in process is actually inducing extra memory
copy operation. With the byte-addressability of NVRAM,
unnecessary memory copy can be avoided as the requested
page already resides in memory—the NVRAM swap area.

Specifically for code pages, we adopt the concept of XIP
to reduce these unnecessary memory copy operations between

main memory and the swap area. As shown in Fig. 2, we
directly set up the page table mappings for the process when
its code pages are stored in NVRAM. The code pages will
still be available to user space processes, i.e., the binary code
in the pages can be executed in-place on the swap area. In
this way, we do not need to copy the pages in swap area
back to main memory since the code pages are always read-
only. Furthermore, as the code pages in the swap area will not
be erased until process termination, writes to the swap area
are limited, furthering prolonging the lifetime of the NVRAM
based swap area.

IV. EVALUATION

We have implemented nCode into Android’s Linux kernel
for the Google Nexus 5 smartphones. In this section, we first
give the experimental setup, and then discuss the experiment
metrics and methodology. Finally, we present and analyze the
experimental results.

A. Experimental Setup

We run all the experiments on a Google Nexus 5 smart-
phone. TABLE II gives the details of experiment setup. We
connect the Google Nexus 5 smartphone to a desktop PC and
use the Android debug bridge (adb) provided in the Android
SDK to communicate with it.

Because NVRAM products are not yet widely available
on the market, in our experiments, we implement the N-
VRAM based swap area using 128MB DRAM. We use the
default swapping scheme implemented in the Linux kernel
as a baseline, and compare it to the proposed technique. We
use the default setting in Linux kernel for selecting victim
process by LMK in nCode and the default swappiness value
in baseline swapping scheme. For fair comparison, instead of
flash memory, we use a RAM-disk of the same size as the
swap area for the baseline scheme. In this paper, we focus
on the endurance issue of NVRAM and we hope that future
NVRAM products will provide near-DRAM performance. In
TABLE II we list six types of popular applications used in
our experiments. Each category includes five applications,
including browser, gaming, news, etc. In our experiments,
we disable all the radio communication functionality except
Wi-Fi as most applications need Internet connection to work
properly. Before each test, we reboot the phone and wait for
a few seconds to ensure each round of experiment starts with
roughly the same state.

B. Metrics and Methodology

We collect the results for the metrics listed in this section.
The methodologies are detailed as we discuss the correspond-
ing metrics. For each metric, each application in the same
category is run for four times.

Number of swap-outs. This metric measures the effect of
write reduction using nCode. For each test, we run all the
applications in each category for 20 minutes and count the
number of swap-outs. We compare the number of swap-outs
in nCode and the baseline scheme.

Application switching delay. Application switching delay
is an important metric for smartphone users. We use the
Ul/Application Exerciser Monkey in Android to automate the
switching between foreground applications and use the Linux
time command to obtain the time consumed to finish each

TABLE II: Experimental setup.

CPU Snapgragon 8974 @2.26GHz
DRAM 2GB LPDDR3
Nexus 5 Storage T16GB eMMC NAND flash
0OS Android 4.4 with kernel 3.4
Category Applications
Browser Firfox, Chrome, Opera, UC Brows-
er, Next Browser
Social Google+, Pinterest, QQ, Sina Wei-
networking bo, Instagram
Multimedia Google Play Music, MX Player, TT-
pod Player, Youtube, KMPlayer
Gamin, Angry Birds, Ingress, Temple Run,
Workload ¢ Crazy Snowboard. Hill Climb Rac.
applications ing
Online Amazon, Ebay, Fancy, Google Play,
shopping TaoBao
News BBC News, Flipboard, NetEase
News, TED, Zaker

TABLE III: Comparison of total number of swap-outs between
nCode and baseline scheme.

[Number of swap-out |

Category [Swap | 2Code Reduction (%)
Browser 44403 26591 40.11
Social networking 38077 18481 51.46
Multimedia 37695 18945 49.74
Gaming 36031 26482 26.50
Online shopping 43034 36787 14.41
News 37714 24823 34.18

switching. When an application is switched to foreground, we
also use Monkey to generate a stream of 100 user events
such as touches and clicks to that application. We start the
recording of application switching delay when the switching
is triggered, and end when the 100 user events are applied to
that application. The results are compared to a swap disabled
scheme to show the switching delay reduction of nCode.
Number of page fault. Page faults in applications will wake
up the kernel and make kernel spend some time to handle the
faults. It’s important to evaluate the number of page faults in
nCode and baseline scheme. We again use the UI/Application
Exerciser Monkey to generate 5000 events to each application
and count the total number of page faults in each category.

C. Results

Fig. 3 shows the number of swap-outs for both nCode and
the baseline scheme. As we can see, compared to baseline
scheme, nCode reduces a large amount of writes to NVRAM.
TABLE III gives the total number of swap-outs under both
configurations. nCode can reduce around 14%-51% writes
to the NVRAM swap area when compared to the baseline
scheme. In nCode, we migrate code pages to the swap
area. Exploiting the read-only property and NVRAM'’s byte-
addressability, we execute the code in-place on the swap area.
Thus, we have avoided swap-ins and also limited the writes
to NVRAM. As time goes by on the x-axis in Fig. 3, nCode
gradually reaches a stable state—no more swap-outs. In Fig.
3, we note that the number of swap-outs almost stayed the
same after a certain period of time, especially for browser,
multimedia, gaming and news applications. On the contrary,
the number of swap-outs in the baseline scheme kept growing,
though the growth rate has slowed down after certain point.
The major reason behind is that when swapped out pages are
accessed, we first need to allocate new pages and then copy
them back to DRAM. However, the requests for new pages

£ 50k £ 50k nCode £ 50k
& 40K & 4ok Swep & 40k
2 30k 2 30k 2 30k
S 20k S 20k S 20k
& 10k & 10k[& 10k[
g 0 1 | L | g 0 1 | | g O 1 | |
z 0 400 800 1200 Z 0 400 800 1200 Z 0 400 800 1200
Time (s) Time (s) Time (s)
(a) Browser (b) Social networking (c) Multimedia
% 50k 7+ nCode % 50k 7+ nCode % 50k 7+ nCode
& 40k T Swep & 40k[" Swap & 40k T SY
2 30K[o, 2 30k| 2 30k
G 20k[© 20k[S 20k
& 10k[8 10k[2 10k
g 0 . | . | . g 0 . | | . g 0 \ | . |
=z 0 400 800 1200 Z 0 400 800 1200 Z 0 400 800 1200
Time (s) Tlme (s) Time (s)
(d) Gaming (e) Online shopping (f) News

Fig. 3: Comparison of the number of swap-outs between nCode and baseline scheme in each application category.

A
I

w

Switching delay (s)
N

—_
T

o

P S o P oq;b & QD
P e 4 S AV
(o) N
L Y >
1S < &
{,;17\ R ¥

Fig. 4: Comparison of average switching delay between nCode and swap disabled scheme for each application.

TABLE IV: Comparison of average switching delay between
nCode and the swap disabled scheme in each category.

[Avg. switching delay (s) |

Category | Swap disabled | nCode | Reduction (%)
Browser 1.33 1.04 21.80
Social networking 1.98 1.26 36.36
Multimedia 1.98 1.66 16.16
Gaming 2.43 1.96 19.34
Online shopping 1.84 1.48 19.57
News 2.24 1.32 41.07

may cause other pages to be swapped out. Thus, the number
of swap-outs in baseline scheme will keep growing over time.

Fig. 4 shows the switching delays for each application under
different configurations. TABLE IV lists the average switching
delay for each application category. nCode can reduce around
19%-41% switching delays on average for each application
category. As shown in Fig. 4, for some applications, we have
reduced the average switching delay by more than 50%, such
as QQ, Flipboard and NetEase News. In the swap disabled
scheme, applications may get terminated by the LMK when
there is no sufficient memory. Thus, switching between those
applications could take longer time as they will have to be
reloaded from flash storage. In nCode, the main memory is
extended by migrating code pages to the swap area. Moreover,
code pages are executed in-place on the swap area. Thus,
applications running with nCode will have less chance to be

terminated by LMK.

Fig. 5 shows the number of page faults for both nCode
and the baseline scheme. As shown, nCode reduces around
20% number of page faults on average compared to baseline
scheme. In nCode, code pages in NVRAM based swap area
are accessed directly with XIP, thus no page faults occur
when accessing pages in NVRAM. On the contrary, when
applications access swapped out pages in baseline scheme,
the underlying hardware will triggers page faults to make the
kernel copy the pages from swap space back to DRAM and
then sets up the page table entries for the applications. Since
nCode reduces the number of page faults compared to baseline
swapping scheme, furthering reducing the time cost by page
fault handler. We conclude that nCode can help improve the
performance of applications.

V. RELATED WORK

To extend memory capacity, many designs have been pro-
posed for both mobile devices and servers. NVM-Swap [5]
and DR. Swap [6] re-adopt swapping using NVRAM for better
performance and energy behavior of smartphones. FASS [21]
is a raw flash based swapping system without using a flash
translation layer. FlashVM [22] is a dedicated flash swapping
design and provides better garbage collection by batching
writes. Li et al. [23] revisits the virtual memory design with

% 3x10° Il Swap [0 nCode -
o,
ooxio- | B e B B
o
MRS RS PR EE e e
(9}
£
S 0
z) B
. O&\ QQ\(\Q’ QQ’Q\
SN s

Fig. 5: Comparison of number of page faults between nCode
and baseline scheme in each application category.

flash in embedded system and focuses on energy behavior of
the system. SSDAlloc [24] is an SSD/DRAM hybrid system
which treats SSD as an extension to DRAM.

Improving the endurance of NVRAM is another active area
of research. Chen et al. [12] introduced an age-based wear
leveling scheme which is compatible with existing virtual
memory design. Start-Gap [13] and segment swapping [11]
are two representative wear leveling algorithms that evenly
distribute writes among all cells of PCM-based main memory.
NVM-Swap [5] features Heap-Wear, a heap-based wear level-
ing scheme for NVRAM-based swapping. Hu et al. [25] focus
on reducing writes on NVRAM for embedded CMPs. Qureshi
et al. [26] proposed a set of techniques such as lazy write
and line level writeback to reduce writes. Khouzani et al. [27]
presented a segment-aware and wear-resistant page allocation
method to prolong the PCM lifetime. Flip-N-Write [15] and
DCW [16] try to reduce the number of bit flips in NVRAM
cells. In this work, we reduce writes by swapping out code
pages in NVRAM based swapping system.

VI. CONCLUSIONS

In this paper, we have proposed nCode, an NVRAM based
swapping system that aims to reduce harmful writes to N-
VRAM. nCode priorities code pages as swapping candidates
in smartphones. nCode selects code pages as they are read-
only—perfect candidates to be swapped out to write-limited
NVRAM. Utilizing the byte-addressability of NVRAM, we
support XIP of code pages on the swap space without copying
the code pages back to DRAM. Experimental results with
various real applications on the Google Nexus 5 smartphone
show that nCode can reduce more than 30% writes to NVRAM
on average when compared to the baseline swapping scheme.
Application switching delay is reduced by more than 20%
on average with nCode enabled. Number of page faults are
also reduced around 20% on average compared to the baseline
swapping scheme.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
their valuable feedback and improvements to this paper. This
work is partially supported by grants from the National
Natural Science Foundation of China (6130900461472052,
and 61173014), National 863 Program (2013AA013202), Re-
search Fund for the Doctoral Program of Higher Education
of China (20130191120030), Chongqging cstc2012ggC40005

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
(1]

(12]

[13]

[14]
[15]

[16]

(17]

(18]

[19]

[20]
[21]
[22]
[23]

[24]
[25]

[26]

[27]

and cstc2013jcyjA40025, Fundamental Research Funds for the
Central Universities (CDJZR14185501).

REFERENCES

H. Kim, N. Agrawal, and C. Ungureanu, “Revisiting storage for smart-
phones,” ACM Transactions on Storage, vol. 8, no. 4, pp. 1-25, 2012.
H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Ra-
jendran, M. Asheghi, and K. E. Goodson, “Phase change memory,”
Proceedings of the IEEE, vol. 98, no. 12, pp. 2201-2227, 2010.

M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Ya-
mane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao,
and H. Kano, “A novel nonvolatile memory with spin torque transfer
magnetization switching: spin-RAM,” in JEDM, 2005, pp. 459-462.
D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, pp. 80-83, 2008.
K. Zhong, T. Wang, X. Zhu, L. Long, D. Liu, W. Liu, Z. Shao,
and E. Sha, “Building high-performance smartphones via non-volatile
memory: The swap approach,” in EMSOFT, 2014.

K. Zhong, X. Zhu, T. Wang, D. Zhang, X. Luo, D. Liu, W. Liu, and
E. H.-M. Sha, “DR. Swap: Energy-efficient paging for smarthpones,” in
ISLPED, 2014, pp. 81-86.

D. Liu, T. Wang, Y. Wang, Z. Shao, Q. Zhuge, and E. Sha, “Curling-
PCM: Application-specific wear leveling for phase change memory
based embedded systems,” in ASP-DAC, 2013, pp. 279-284.

C. Xue, G. Sun, Y. Zhang, J. Yang, Y. Chen, and H. Li, “Emerging
non-volatile memories: Opportunities and challenges,” in CODES+ISSS,
2011, pp. 325-334.

Y. Wang, Y. Liu, Y. Liu, D. Zhang, S. Li, B. Sai, M.-F. Chiang, and
H. Yang, “A compression-based area-efficient recovery architecture for
nonvolatile processors,” in DATE, 2012, pp. 1519-1524.

B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable DRAM alternative,” in ISCA, 2009, pp. 2-13.

P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” in ISCA, 2009,
pp. 14-23.

C.-H. Chen, P-C. Hsiu, T.-W. Kuo, C.-L. Yang, and C.-Y. M. Wang,
“Age-based PCM wear leveling with nearly zero search cost,” in DAC,
2012, pp. 453-458.

M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali, “Enhancing lifetime and security of PCM-based main
memory with Start-gap wear leveling,” in MICRO, 2009, pp. 14-23.
M. Zhao, L. Jiang, Y. Zhang, and C. J. Xue, “SLC-enabled wear leveling
for MLC PCM considering process variation,” in DAC, 2014, pp. 1-6.
S. Cho and H. Lee, “Flip-N-Write: A simple deterministic technique to
improve PRAM write performance, energy and endurance,” in MICRO,
2009, pp. 347-357.

B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu, “A low
power phase-change random access memory using a data-comparison
write scheme,” in ISCAS, 2007, pp. 3014-3017.

B. Li, Y. Shan, M. Hu, Y. Wang, Y. Chen, and H. Yang, “Memristor-
based approximated computation,” in ISLPED, 2013, pp. 242-247.

B. Li, Y. Wang, Y. Wang, Y. Chen, and H. Yang, “Training itself:
Mixed-signal training acceleration for memristor-based neural network,”
in ASP-DAC, 2014, pp. 361-366.

S. Eilert, M. Leinwander, and G. Crisenza, ‘“Phase change memory: A
new memory enables new memory usage models,” in /MW, 2009, pp.
1-2.

Z. Shao, Y. Liu, Y. Chen, and T. Li, “Utilizing PCM for energy
optimization in embedded systems,” in ISVLSI, 2012, pp. 398-403.

D. Jung, J. soo Kim, S. yeong Park, J. uk Kang, and J. Lee, “FASS: A
flash-aware swap system,” in IWSSPS, 2005.

M. Saxena and M. M. Swift, “FlashVM: Revisiting the virtual memory
hierarchy,” in HotOS, 2009, pp. 13-13.

H.-L. Li, C.-L. Yang, and H.-W. Tseng, “Energy-aware flash memory
management in virtual memory system,” /EEE VLSI, vol. 16, no. 8, pp.
952-964, 2008.

A. Badam and V. S. Pai, “SSDAlloc: Hybrid SSD/RAM memory
management made easy,” in USENIX NSDI, 2011, pp. 211-224.

J. Hu, C. J. Xue, Q. Zhuge, W.-C. Tseng, and E. H.-M. Sha, “Write
activity reduction on non-volatile main memories for embedded chip
multiprocessors,” ACM TECS, vol. 12, no. 3, pp. 1-27, 2013.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,”
in ISCA, 2009, pp. 24-33.

H. Aghaei Khouzani, Y. Xue, C. Yang, and A. Pandurangi, “Prolong-
ing PCM lifetime through energy-efficient, segment-aware, and wear-
resistant page allocation,” in ISLPED, 2014, pp. 327-330.

